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Abstract

Shared memory multiprocessor systems typically provide a set of hardware primitives in
order to support synchronization. Generally, they provide single-word read-modify-write
hardware primitives such as compare-and-swap, load-linked/store-conditional and fetch-
and-op, from which the higher-level synchronization operations are then implemented in
software. Although the single-word hardware primitives are conceptually powerful enough
to support higher-level synchronization, from the programmer’s point of view they are not
as useful as their generalizations to the multi-word objects.

This paper presents two fast and reactive lock-free multi-word compare-and-swap algo-
rithms. The algorithms dynamically measure the level of contention as well as the memory
conflicts of the multi-word compare-and-swap operations, and in response, they react ac-
cordingly in order to guarantee good performance in a wide range of system conditions.
The algorithms are non-blocking (lock-free), allowing in this way fast dynamical behavior.
Experiments on thirty processors of an SGI Origin2000 multiprocessor show that both our
algorithms react quickly according to the contention variations and outperform the best
known alternatives in almost all contention conditions.

1. Introduction

Synchronization is an essential point of hardware/software interaction. On one hand, pro-
grammers of parallel systems would like to be able to use high-level synchronization oper-
ations. On the other hand, the systems can support only a limited number of hardware
synchronization primitives. Typically, the implementation of the synchronization operations
of a system is left to the system designer, who has to decide how much of the functionality
to implement in hardware and how much in software in system libraries. There has been
a considerable debate about how much hardware support and which hardware primitives
should be provided by the systems.

Consider the multi-word compare-and-swap operations (CASNs) that extend the single-
word compare-and-swap operations from one word to many. A single-word compare-and-
swap operation (CAS) takes as input three parameters: the address, an old value and a
new value of a word, and atomically updates the contents of the word if its current value is
the same as the old value. Similarly, an N-word compare-and-swap operation takes the ad-
dresses, old values and new values of N words, and if the current contents of these N words
all are the same as the respective old values, the CASN will update the new values to the re-
spective words atomically. Otherwise, we say that the CAS/CASN fails, leaving the variable
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values unchanged. It should be mentioned here that different processes might require differ-
ent number of words for their compare-and-swap operations and the number is not a fixed
parameter. Because of this powerful feature, CASN makes the design of concurrent data
objects much more effective and easier than the single-word compare-and-swap [5, 6, 7].
On the other hand most multiprocessors support only single word compare-and-swap or
compare-and-swap-like operations e.g. Load-Linked/Store-Conditional in hardware.

As it is expected, many research papers implementing the powerful CASN operation
have appeared in the literature [1, 2, 8, 12, 14, 16]. Typically, in a CASN implementation,
a CASN operation tries to lock all words it needs one by one. During this process, if a
CASN operation is blocked by another CASN operation, then the process executing the
blocked CASN may decide to help the blocking CASN. Even though most of the CASN
designs use the helping technique to achieve the lock-free or wait-free property, the helping
strategies in the designs are different. In the recursive helping policy [1, 8, 12], the CASN
operation, which has been blocked by another CASN operation, does not release the words
it has acquired until its failure is definite, even though many other not conflicting CASNs
might have been blocked on these words. On the other hand, in the software transactional
memory [14, 16] the blocked CASN operation immediately releases all words it has acquired
regardless of whether there is any other CASN in need of these words at that time. In low
contention situations, the release of all words acquired by a blocked CASN operation will
only increase the execution time of this operation without helping many other processes.
Moreover, in any contention scenario, if a CASN operation is close to acquiring all the words
it needs, releasing all its acquired words will not only significantly increase its execution
time but also increase the contention in the system when it tries to acquire these words
again. The disadvantage of these strategies is that both of them are not adaptable to the
different memory access patterns that different CASNs can trigger, or to frequent variations
of the contention on each individual word of shared data. This can actually have a large
impact on the performance of these implementations.

The idea behind the work described in this paper is that giving the CASN operation the
possibility to adapt its helping policy to variations of contention can have a large impact
on the performance in most contention situations. Of course, dynamically changing the
behavior of the protocol comes with the challenge of performance. The overhead that the
dynamic mechanism will introduce should not exceed the performance benefits that the
dynamic behavior will bring.

The rest of this paper is organized as follows. We give a brief problem description,
summarize the related work and give more detailed description of our contribution in Sec-
tion 2. Section 3 presents our algorithms at an abstract level. The algorithms in detail are
described in Section 4. Section 5 presents the correctness proofs of our algorithms. In Sec-
tion 6 we present the performance evaluation of our CASN algorithms and compare them
to the best known alternatives, which also represent the two helping strategies mentioned
above. Finally, Section 7 concludes the paper.

2. Problem Description, Related Work and Our Contribution

Concurrent data structures play a significant role in multiprocessor systems. To ensure
consistency of a shared data object in a concurrent environment, the most common method
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is to use mutual exclusion, i.e. some form of locking. Mutual exclusion degrades the
system’s overall performance as it causes blocking, i.e. other concurrent operations cannot
make any progress while the access to the shared resource is blocked by the lock. Using
mutual exclusion can also cause deadlocks, priority inversion and even starvation.

To address these problems, researchers have proposed non-blocking algorithms for shared
data objects. Non-blocking methods do not involve mutual exclusion, and therefore do not
suffer from the problems that blocking can cause. Non-blocking algorithms are either lock-
free or wait-free. Lock-free implementations guarantee that regardless of the contention
caused by concurrent operations and the interleaving of their sub-operations, always at
least one operation will progress. However, there is a risk for starvation as the progress
of other operations could cause one specific operation to never finish. Wait-free [11] algo-
rithms are lock-free and moreover they avoid starvation as well. In a wait-free algorithm
every operation is guaranteed to finish in a limited number of steps, regardless of the ac-
tions of the concurrent operations. Non-blocking algorithms have been shown to be of big
practical importance [18, 19], and recently NOBLE, which is a non-blocking inter-process
communication library, has been introduced [17].

The main problem of lock/wait-free concurrent data structures is that many processes
try to read and modify the same portions of the shared data at the same time and the
accesses must be atomic to one another. That is why a multi-word compare-and-swap
operation is so important for such data structures.

Herlihy proposed a methodology for implementing concurrent data structures where
interferences among processes are prevented by generating a private copy of the portion
changed by each process [10]. The disadvantages of Herlihy’s methodology are the high
cost for copying large objects and the loss of disjoint-access-parallelism. The disjoint-
access-parallelism means that processes accessing no common portion of the shared data
should be able to progress in parallel.

Barnes [3] later suggested a cooperative technique which allows many processes to access
the same data structure concurrently as long as the processes write down exactly what they
will be doing. Before modifying a portion of the shared data, a process p1 checks whether
this portion is used by another process p2. If this is the case, process p1 will cooperate with
p2 to complete the work of process p2.

Israeli and Rappoport transformed this technique into one more applicable in practice
in [12], where the concept of disjoint-access-parallelism was introduced. All processes try
to lock all portions of the shared data they need before writing back the new values to
the portions one by one. An owner field is assigned to every portion of the shared data to
inform the processes about which process is the owner of the portion at that time.

Harris, Fraser and Pratt [8] aiming to reduce the per-word space overhead eliminated
the owner field. They exploited the data word for containing a special value, a pointer to a
CASNDescriptor, to pass the information of which process is the owner of the data word.
However, in their paper the memory management problem is not discussed clearly.

A wait-free multi-word compare-and-swap was introduced by Anderson and Moir in [1].
The cooperative technique was employed in the aforementioned results as well.

However, the disadvantage of the cooperative technique is that the process, which is
blocked by another process, does not release the words it owns when it helps the blocking
process, even though many other processes blocked on these words may be able to make
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progress if these words are released. This cooperative technique uses a recursive helping
policy, and the time needed for a blocked process p1 to help another process p2 may be
long. Moreover, the longer the response time of p1, the bigger the number of processes
blocked by p1. The processes blocked by p1 will first help process p1 and then continue to
help process p2 even when they and process p2 access disjoint parts of the data structure.
This problem will be solved if process p1 does not conservatively keep its words and releases
them while it is helping the blocking process p2.

The left part in Figure 1 illustrates the helping strategy of the recursive helping policy.
There are three processes executing three CAS4: p1 wants to lock words 1,2,3,4; p2 wants
to lock words 3,6 and two other words; and p3 wants to lock words 6,7,8 and another word.
At that time, the first CAS4 acquired words 1 and 2, the second CAS4 acquired word 3 and
the third CAS4 acquired words 6,7 and 8. When process p1 helps the first CAS4, it realizes
that word 3 was acquired by the second CAS4 and thus it helps the second CAS4. Then,
p1 realizes that word 6 was acquired by the third CAS4 and it continues to help the third
CAS4 and so on. We observe that i) the time for a process to help other CASN operations
may be long and unpredictable and ii) if the second CAS4 did not conservatively keep word
3 while helping other CAS4, the first CAS4 could succeed without helping other CAS4s,
especially the third CAS4 that did not block the first CAS4. Note that helping causes more
contention on the memory. Therefore, the less helping is used, the lower the contention
level on the memory is.
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Figure 1: Recursive helping policy and software transactional memory

Shavit and Touitou realized the problem above and presented the software transactional
memory (STM) in [16]. In STM, a process p1 that was blocked by another process p2

releases the words it owns immediately before helping blocking process p2. Moreover, a
blocked process helps at most one blocking process, so recursive helping does not occur.
STM then was improved by Moir [14], who introduced a design of a conditional wait-free
multi-word compare-and-swap operation. An evaluating function passed to the CASN by
the user will identify whether the CASN will retry when the contention occurs. Nevertheless,
both STM and the improved version (iSTM) also have the disadvantage that the blocked
process releases the words it owns regardless of the contention level on the words. That
is, even if there is no other process requiring the words at that time, it still releases the

4



Reactive Multi-word Synchronization for Multiprocessors

words, and after helping the blocking process, it may have to compete with other processes
to acquire the words again. Moreover, even if a process acquired the whole set of words
it needs except for the last one, which is owned by another process, it still releases all the
words and then starts from scratch. In this case, it should realize that not many processes
require the words and that it is almost successful, so it would be best to try to keep the
words as in the cooperative technique.

The right part of Figure 1 illustrates the helping strategy of STM. At that time, the
first CAS4 acquired word 1, the second CAS4 acquired words 2,3 and 5 and the third CAS4
acquired words 6,7 and 8. When process p1 helps the first CAS4, it realizes that word 2 was
acquired by the second CAS4. Thus, it releases word 1 and helps the second CAS4. Then,
when p1 realizes that the second CAS4 was blocked by the third CAS4 on word 6, it, on
behalf of the second CAS4, releases word 5,3 and 2 and goes back to help the first CAS4.
Note that i) p1 could have benefited by keeping word 1 because no other CAS4 needed
the word; otherwise, after helping other CAS4s, p1 has to compete with other processes to
acquire word 1 again; and ii) p1 should have tried to help the second CAS4 a little bit more
because this CAS4 operation was close to success.

Note that most algorithms require the N words to be sorted in addresses and this can
add an overhead of O(logN) because of sorting. However, most applications can sort these
addresses before calling the CASN operations.

2.1 Our Contribution

All available CASN implementations have their weak points. We realized that the weak-
nesses of these techniques came from their static helping policies. These techniques do not
provide the ability to CASN operations to measure the contention that they generate on the
memory words, and more significantly to reactively change their helping policy accordingly.
We argue that these weaknesses are not fundamental and that one can in fact construct
multi-word compare-and-swap algorithms where the CASN operations: i) measure in an
efficient way the contention that they generate and ii) reactively change the helping scheme
to help more efficiently the other CASN operations.

Synchronization methods that perform efficiently across a wide range of contention con-
ditions are hard to design. Typically, small structures and simple methods fit better low con-
tention levels while bigger structures and more complex mechanisms can help to distribute
processors/processes among the memory banks and thus alleviate memory contention.

The key to our first algorithm is for every CASN to release the words it has acquired
only if the average contention on the words becomes too high. This algorithm also favors the
operations closer to completion. The key to our second algorithm is for a CASN to release
not all the words it owns at once but just enough so that most of the processes blocked
on these words can progress. The performance evaluation of the proposed algorithms on
thirty processors of an SGI Origin2000 multiprocessor, which is presented in Section 6,
matches our intuition. In particular, it shows that both our algorithms react fast according
to the contention conditions and significantly outperform the best-known alternatives in all
contention conditions.
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3. Algorithm Informal Description

In this section, we present the ideas of our reactive CASN operations at an abstract level.
The details of our algorithms are presented in the next section.

In general, practical CASN operations are implemented by locking all the N words and
then updating the value of each word one by one accordingly. Only the process having
acquired all the N words it needs can try to write the new values to the words. The
processes that are blocked, typically have to help the blocking processes so that the lock-
free feature is obtained. The helping schemes presented in [1, 8, 12, 14, 16] are based on
different strategies that are described in Section 2.

ENDLOCK

FAILURE

SUCCESS

UNLOCK

PHASE ONE PHASE TWO

i i i j

N state blocked

addr[N]

new[N]

shared memory words

OP[i]

exp[N]

Mem

value

owner

Figure 2: Reactive-CASN states and reactive-CAS4 data structure

The variable OP [i] described in Figure 2 is the shared variable that carries the data
of CASNi. It consists of three arrays with N elements each: addri, expi and newi and a
variable blockedi that contain the addresses, the old values, the new values of the N words
that need to be compared-and-swapped atomically and the number of CASN operations
blocked on the words, respectively. The N elements of array addri must be increasingly
sorted in addresses to avoid live-lock in the helping process. Each entry of the shared
memory Mem, a normal 32-bit word used by the real application, has two fields: the value
field (24 bits) and the owner field (8 bits). The owner field needs log2P + 1 bits, where P
is the number of processes in the system. The value field contains the real value of the word
while the owner field contains the identity of the CASN operation that has acquired the
word. For a system supporting 64-bit words, the value field can be up to 56 bits if P < 256.
However, the value field cannot contain a pointer to a memory location in some modern
machines where the size of pointer equals the size of the largest word. For information on
how to eliminate the owner field, see [8].

Each CASN operation consists of two phases as described in Figure 2. The first phase
has two states Lock and Unlock and it tries to lock all the necessary words according to
our reactive helping scheme. The second one has also two states Failure and Success.
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The second phase updates or releases the words acquired in the first phase according to the
result of phase 1.

Figure 3 describes our CASN operation at a high level.

CASN(OP [i])
try again :

Try to lock all N necessary words;
if manage to lock all the N words then

write new values to these words one by one; return Success;
else if read an unexpected value then

release all the words that have been locked by CASNi; return Failure;
else if contention is “high enough” then

release some/all CASNi’s words to reduce contention; goto try again;

Figure 3: Reactive CASN description

In order to know whether the contention on CASNi’s words is high, each CASNi uses
variable OP [i].blocked to count how many other CASNs are being blocked on its words.
Now, which contention levels should be considered high? The CASNi has paid a price
(execution time) for the number of words that it has acquired and thus it should not yield
these words to other CASNs too generously as the software transactional memory does.
However, it should not keep these words egoistically as in the cooperative technique because
that will make the whole system slowdown. Let wi be the number of words currently kept
by CASNi and ni be the estimated number of CASNs that will go ahead if some of wi words
are released. The CASNi will consider releasing its words only if it is blocked by another
CASN. The challenge for CASNi is to balance the trade-off between its own progress wi

and the potential progress ni of the other processes. If CASNi knew how the contention on
its wi words will change in the future from the time CASNi is blocked to the time CASNi

will be unblocked, as well as the time CASNi will be blocked, CASNi would have been
able to make an optimal trade-off. Unfortunately, there is no way for CASNi to have this
kind of information.

The terms used in the section are summarized in the following table:

Terms Meanings
P the number of processes in the system
N the number of words needing to be updated atomically
wi the number of words currently kept by CASNi

blockedi the number CASN operations blocked by CASNi

ri the average contention on words currently kept by CASNi

m the lower bound of average contention ri

M the upper bound of average contention ri

c the competitive ratio

Figure 4: The term definitions
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3.1 The First Algorithm

Our first algorithm concentrates on the question of when CASNi should release all the wi

words that it has acquired. A simple solution is as follows: if the average contention on
the wi words, ri = blockedi

wi
, is greater than a certain threshold, CASNi releases all its wi

words to help the many other CASNs to go ahead. However, how big should the threshold
be in order to optimize the trade-off? In our first reactive CASN algorithm, the threshold
is calculated in a similar way to the reservation price policy [4]. This policy is an optimal
deterministic solution for the online search problem where a player has to decide whether
to exchange his dollars to yens at the current exchange rate or to wait for a better one
without knowing how the exchange rate will vary.

Let P and N be the number of processes in the system and the number of words needing
to be updated atomically, respectively. Because CASNi only checks the release-condition
when: i) it is blocked and ii) it has locked at least a word and blocked at least a CASN, we
have that 1 ≤ blockedi ≤ (P − 2) and 1 ≤ wi ≤ (N − 1). Therefore, m ≤ ri ≤ M where
m = 1

N−1 and M = P − 2. Our reservation contention policy is as follows:
Reservation contention policy: CASNi releases its wi words when the average

contention ri is greater than or equal to R∗ =
√

Mm.
The policy is

√
M
m -competitive. For the proof and more details on the policy, see reser-

vation price policy [4].
Beside the advantage of reducing collision, the algorithm also favors CASN operations

that are closer to completion, i.e wi is larger, or that cause a small number of conflicts, i.e.
blockedi is smaller. In both cases, ri becomes smaller and thus CASNi is unlikely to release
its words.

3.2 The Second Algorithm

Our second algorithm decides not only when to release the CASNi’s words but also how
many words need to be released. It is intuitive that the CASNi does not need to release
all its wi words but releases just enough so that most of the CASN operations blocked by
CASNi can go ahead.

The second reactive scheme is influenced by the idea of the threat-based algorithm [4].
The algorithm is an optimal solution for the one-way trading problem, where the player
has to decide whether to accept the current exchange rate as well as how many of his/her
dollars should be exchanged to yens at the current exchange rate.

Definition 3.1. A transaction is the interval from the time a CASN operation is blocked
to the time it is unblocked and acquires a new word

In our second scheme, the following rules must be satisfied in a transaction. According
to the threat-based algorithm [4], we can obtain an optimal competitive ratio for unknown
duration variant c = ϕ− ϕ−1

ϕ1/(ϕ−1) if we know only ϕ, where ϕ = M
m ; m and M are the lower

bound and upper bound of the average contention on the words acquired by the CASN as
mentioned in subsection 3.1, respectively:

1. Release words only when the current contention is greater than (m ∗ c) and is the
highest so far.
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2. When releasing, release just enough words to keep the competitive ratio c.

Similar to the threat-based algorithm [4], the number of words which should be released by

a blocked CASNi at time t is dt
i = Di ∗ 1

c ∗
rt
i−rt−1

i

rt
i−m

, where rt−1
i is the highest contention

until time (t− 1) and Di is the number of words acquired by the CASNi at the beginning
of the transaction. In our algorithm, ri stands for the average contention on the words
kept by a CASNi and is calculated by the following formula: ri = blockedi

wi
as mentioned in

Section 3.1. Therefore, when CASNi releases words with contention smaller than ri, the
average contention at that time, the next average contention will increase and CASNi must
continue releasing words in decreasing order of word-indices until the word that made the
average contention increase is released. When this word is released, the average contention
on the words locked by CASNi is going to reduce, and thus according to the first of the
previous rules, CASNi does not release its remaining words anymore at this time. That is
how just enough to help most of the blocked processes is defined in our setting.

Therefore, beside the advantage of reducing collision, the second algorithm favors to
release the words with high contention.

4. Implementations

In this section, we describe our reactive multi-word compare-and-swap implementations.
The synchronization primitives related to our algorithms are fetch-and-add (FAA),

compare-and-swap (CAS) and load-linked/validate/store-conditional (LL/VL/SC). The def-
initions of the primitives are described in Figure 5, where x is a variable and v, old, new are
values.

FAA(x, v)
atomically {

oldx← x;
x← x + v;
return(oldx)
}

CAS(x, old, new)
atomically {

if(x = old)
x← new;
return(true);

else return(false);
}

LL(x){
return the value of x such that it may be subsequently used with SC
}

VL(x)
atomically {

if (no other process has written to x since the last LL(x))
return(true);

else return(false);
}

SC(x, v)
atomically {

if (no other process has written to x since the last LL(x))
x← v; return(true);

else return(false);
}

Figure 5: Synchronization primitives
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For the systems that support weak LL/SC such as the SGI Origin2000 or the sys-
tems that support CAS such as the SUN multiprocessor machines, we can implement the
LL/VL/SC instructions algorithmically [13].

4.1 First Reactive Scheme

The part of a CASN operation (CASNi) that is of interest for our study is the part that
starts when CASNi is blocked while trying to acquire a new word after having acquired
some words; and ends when it manages to acquire a new word. This word could have
been locked by CASNi before CASNi was blocked, but then released by CASNi. Our
first reactive scheme decides whether and when the CASNi should release the words it has
acquired by measuring the contention ri on the words it has acquired, where ri = blockedi

kepti
and blockedi is the number of processes blocked on the kepti words acquired by CASNi.
If the contention ri is higher than a contention threshold R∗, process pi releases all the
words. The contention threshold R∗ is computed according to the reservation contention
policy in Section 3.1. One interesting feature of this reactive helping method is that it favors
processes closer to completion as well as processes with a small number of conflicts.

At the beginning, the CASN operation starts phase one in order to lock the N words.
Procedure Casn tries to lock the words it needs by setting the state of the CASN to Lock
(line 1 in Casn). Then, procedure Help is called with four parameters: i) the identity
of helping-process helping, ii) the identity of helped-CASN i, iii) the position from which
the process will help the CASN lock words pos, and iv) the version ver of current variable
OP [i]. In the Help procedure, the helping process chooses a correct way to help CASNi

according to its state. At the beginning, CASNi’s state is Lock. In the Lock state, the
helping process tries to help CASNi lock all necessary words:

• If the CASNi manages to lock all the N words successfully, its state changes into
Success (line 7 in Help), then it starts phase two in order to conditionally write the
new values to these words (line 10 in Help).

• If the CASNi, when trying to lock all the N words, discovers a word having a value
different from its old value passed to the CASN, its state changes into Failure (line
8 in Help) and it starts phase two in order to release all the words it locked (line 11
in Help).

• If the CASNi is blocked by another CASNj , it checks the unlock-condition before
helping CASNj (line 6 in Locking). If the unlock-condition is satisfied, CASNi’s
state changes into Unlock (line 3 in CheckingR) and it starts to release the words it
locked (line 3 in Help).

Procedure Locking is the main procedure in phase one, which contains our first reactive
scheme. In this procedure, the process called helping tries to lock all N necessary words for
CASNi. If one of them has a value different from its expected value, the procedure returns
Fail (line 4 in Locking). Otherwise, if the value of the word is the same as the expected
value and it is locked by another CASN (lines 6-15 in Locking) and at the same time CASNi

satisfies the unlock-condition, its state changes into Unlock (line 3 in CheckingR). That
means that other processes whose CASNs are blocked on the words acquired by CASNi
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type word type = record value; owner; end; /*normal 32-bit words*/
state type = {Lock, Unlock, Succ, Fail, Ends, Endf};
para type = record N : integer; addr: array[1..N ] of ∗word type ; exp, new: array[1..N ] of word type; /*CASN*/

state: state type; blocked : 1..P ; end; /*P: #processes*/
return type = record kind:{Succ, Fail, Circle}; cId:1..P ; end;/*cId: Id of a CASN participating in a circle-help*/

shared var Mem: set of word type; OP : array[1..P ] of para type; V ersion: array[1..P ] of unsigned long;
private var casn l: array[1..P ] of 1..P ; /*keeping CASNs currently helped by the process*/

l: of 1..P ; /*the number of CASNs currently helped by the process*/

/* Version[i] must be increased by one before OP[i] is
used to contain parameters addr[], exp[] and new[] for
Casn(i) */
state type Casn(i)
begin
1: OP [i].blocked := 0; OP [i].state := Lock;

for j := 1 to P do casn l[j] = 0;
2: l := 1; casn l[l] := i;

/*record CASNi as a currently helped one*/
3: Help(i, i, 0, V ersion[i]);

return OP [i].state;
end.

return type Locking(helping, i, pos)
begin
start:

for j := pos to OP [i].N do
/*only help from position pos*/

1: e.addr = OP [i].addr[j]; e.exp = OP [i].exp[j];
again:

2: x := LL(e.addr);
3: if (not V L(&OP [i].state)) then return (nil, nil);

/*return to read its new state*/
4: if (x.value 6= e.exp) then

return (Fail, nil); /*x was updated*/
else if (x.owner = nil) then /*x is available*/

5: if (not SC(e.addr, (e.exp, i)) then goto again;
else if (x.owner 6= i) then
/*x is locked by another CASN*/

/*check unlock-condition*/
6: CheckingR(i, OP [i].blocked, j − 1);
7: if (x.owner in casn l) then

return (Circle, x.owner); /*circle-help*/
8: Find index k: OP [x.owner].addr[k] = e.addr;
9: ver = V ersion[x.owner];
10: if ( not V L(e.addr)) then goto again;
11: FAA(&OP [x.owner].blocked, 1);
12: l := l + 1; casn l[l] := x.owner;

/*record x.owner*/
13: r := Help(helping, x.owner, k, ver);
14: casn l[l] := 0; l := l − 1;

/*omit x.owner’s record*/
15: if ((r.kind = Circle) and (r.cId 6= i)) then

return r; /*CASNi is not the expected
CASN in the circle help*/

goto start;
return (Succ, nil);

end.

return type Help(helping, i, pos, ver)
begin
start :
1: state := LL(&OP [i].state);
2: if (ver 6= V ersion[i]) then return (Fail, nil);

if (state = Unlock) then
/*CASNi is in state Unlock*/

3: Unlocking(i);
if (helping = i) then
/*helping is CASNi’s original process*/

4: SC(&OP [i].state, Lock);
goto start; /*help CASNi*/

else /*otherwise, return to previous CASN*/
5: FAA(&OP [i].blocked,−1);
5’: return (Succ, nil);

else if (state = Lock) then
6: result := Locking(helping, i, pos);

if (result.kind = Succ) then
/*Locking N words successfully*/

7: SC(&OP [i].state, Succ);
/*change its state to Success*/

else if (result.kind = Fail) then
/*Locking unsuccessfully*/

8: SC(&OP [i].state, Fail);
/*change its state to Failure*/

else if (result.kind = Circle) then
/*the circle help occurs*/

9: FAA(&OP [i].blocked,−1); return result;
/*return to the expected CASN*/

goto start;
else if (state = Succ) then

10: Updating(i); SC(&OP [i].state, Ends);
/*write new values*/

else if (state = Fail) then
11: Releasing(i); SC(&OP [i].state, Endf);

/*release its words*/
return (Succ, nil);

end.

CheckingR(owner, blocked, kept)
begin
1: if ((kept = 0) or (blocked = 0)) then return;
2: if (not V L(&OP [owner].state)) then return;

3: if ( blocked
kept

> R∗) then

SC(&OP [owner].state, Unlock);
return;

end.

Figure 6: Procedures CASN, Help, Locking and CheckingR in our first reactive multi-word
compare-and-swap algorithm
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Updating(i)
begin

for j := 1 to OP [i].N do
1: e.addr = OP [i].addr[j]; e.exp = OP [i].exp[j];
2: e.new = OP [i].new[j];

again :
3: x := LL(e.addr);
4: if (not V L(&OP [i].state)) then return;

if (x = (e.exp, i)) then
/*x is expected value & locked by CASNi*/

5: if ( not SC(e.addr, (e.new, nil)) then
goto again;

return;
end.

Unlocking(i)/Releasing(i)
begin

for j := OP [i].N downto 1 do
1: e.addr = OP [i].addr[j]; e.exp = OP [i].exp[j];

again :
2: x := LL(e.addr);
3: if not V L(&OP [i].state) then return;

if (x = (e.exp, nil)) or (x = (e.exp, i)) then
4: if (not SC(e.addr, (e.exp, nil)) then

goto again;
return;

end.

Figure 7: Procedures Updating and Unlocking/Releasing in our first reactive multi-word
compare-and-swap algorithm

can, on behalf of CASNi, unlock the words and then acquire them while the CASNi’s
process helps its blocking CASN operation, CASNx.owner (line 13 in Locking).

Procedure CheckingR checks whether the average contention on the words acquired by
CASNi is high and has passed a threshold: the unlock-condition. In this implementation,
the contention threshold is R∗, R∗ =

√
P−2
N−1 , where P is the number of concurrent processes

and N is the number of words that need to be updated atomically by CASN.
At time t, CASNi has created average contention ri on the words that it has acquired,

ri = blockedi
kepti

, where blockedi is the number of CASNs currently blocked by CASNi and
kepti is the number of words currently locked by CASNi. CASNi only checks the unlock-
condition when: i) it is blocked and ii) it has locked at least a word and blocked at least
a process (line 1 in CheckingR). The unlock-condition is to check whether blockedi

kepti
≥ R∗.

Every process blocked by CASNi on word OP [i].addr[j] increases OP [i].blocked by one
before helping CASNi using a fetch-and-add operation (FAA) (line 11 in Locking), and
decreases the variable by one when it returns from helping the CASNi (line 5 and 9 in
Help). The variable is not updated when the state of the CASNi is Success or Failure
because in those cases CASNi no longer needs to check the unlock-condition.

There are two important variables in our algorithm, the V ersion and casn l variables.
These variables are defined in Figure 6.

The variable V ersion is used for memory management purposes. That is when a process
completes a CASN operation, the memory containing the CASN data, for instance OP [i],
can be used by a new CASN operation. Any process that wants to use OP [i] for a new
CASN must firstly increase the V ersion[i] and pass the version to procedure Help (line 3
in Casn). When a process decides to help its blocking CASN, it must identify the current
version of the CASN (line 9 and 10 in Locking) to pass to procedure Help (line 13 in
Locking). Assume process pi is blocked by CASNj on word e.addr, and pi decides to help
CASNj . If the version pi reads at line 9 is not the version of OP [j] at the time when
CASNj blocked pi, that is CASNj has ended and OP [j] is re-used for another new CASN,
the field owner of the word has changed. Thus, command V L(e.addr) at line 10 returns

12
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failure and pi must read the word again. This ensures that the version passed to Help at
line 13 in procedure Locking is the version of OP [j] at the time when CASNj blocked pi.
Before helping a CASN, processes always check whether the CASN version has changed
(line 2 in Help).

The other significant variable is casn l, which is local to each process and is used to
trace which CASNs have been helped by the process in order to avoid the circle-helping
problem. Consider the scenario described in Figure 8. Four processes p1, p2, p3 and p4

are executing four CAS3 operations: CAS31, CAS32, CAS33 and CAS34, respectively.
The CAS3i is the CAS3 that is initiated by process pi. At that time, CAS32 acquired
Mem[1], CAS33 acquired Mem[2] and CAS34 acquired Mem[3] and Mem[4] by writing
their original helping process identities in the respective owner fields (recall that Mem
is the set of separate words in the shared memory, not an array). Because p2 is blocked
by CAS33 and CAS33 is blocked by CAS34, p2 helps CAS33 and then continues to help
CAS34. Assume that while p2 is helping CAS34, another process discovers that CAS33

satisfies the unlock-condition and releases Mem[2], which was blocked by CAS33; p1, which
is blocked by CAS32, helps CAS32 acquire Mem[2] and then acquire Mem[5]. Now, p2,
when helping CAS34 lock Mem[5], realizes that the word was locked by CAS32, its own
CAS3, that it has to help now. Process p2 has made a cycle while trying to help other
CAS3 operations. In this case, p2 should return from helping CAS34 and CAS33 to help
its own CAS3, because, at this time, the CAS32 is not blocked by any other CAS3. The
local arrays casn ls are used for this purpose. Each process pi has a local array casn li with
size of the maximal number of CASNs the process can help at one time. Recall that at one
time each process can execute only one CASN, so the number is not greater than P , the
number of processes in the system. In our implementation, we set the size of arrays casn l
to P , i.e. we do not limit the number of CASNs each process can help.

owner

value

Mem[M] 1 2 3 4 5 6 7 8

2 3 4 4

p1

p4

p3

p2

(A)

p1

p4

p3

p2

owner

value

Mem[M] 1 2 3 4 5 6 7 8

2 4 4 22

(B)

Figure 8: Circle-helping problem: (A) Before helping; (B) After p1 helps CAS32 acquire
Mem[2] and Mem[5].
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An element casn li[l] is set to j when process pi starts to help a CASNj initiated by
process pj and the CASNj is the lth CASN that process pi is helping at that time. The
element is reset to 0 when process pi completes helping the lth CASN. Process pi will realize
the circle-helping problem if the identity of the CASN that process pi intends to help has
been recorded in casn li.

In procedure Locking, before process phelping helps CASNx.owner, it checks whether it
is helping the CASN currently (line 7 in Locking). If yes, it returns from helping other
CASNs until reaching the unfinished helping task on CASNx.owner (line 15 in Locking) by
setting the returned value (Circle, x.owner) (line 7 in Locking). The lth element of the
array is set to x.owner before the process helps CASNx.owner, its lth CASN, (line 12 in
Locking) and is reset to zero after the process completes the help (line 14 in Locking).

In our methods, a process helps another CASN, for instance CASNi, just enough so
that its own CASN can progress. The strategy is illustrated by using the variable casn l
above and helping the CASNi unlock its words. After helping the CASNi release all its
words, the process returns immediately because at this time the CASN blocked by CASNi

can go ahead (line 5’ in Help). After that, no process helps CASNi until the process that
initiated it, pi, returns and helps it progress (line 4 in Help).

4.2 Second Reactive Scheme

In the first reactive scheme, a CASNi must release all its acquired words when it is blocked
and the average contention on these words is higher than a threshold, R∗. It will be more
flexible if the CASNi can release only some of its acquired words on which many other
CASNs are being blocked.

The second reactive scheme is more adaptable to contention variations on the shared
data than the first one. An interesting feature of this method is that when CASNi is
blocked, it only releases just enough words to reduce most of CASNs blocked by itself.

According to rule 1 of the second reactive scheme as described in Section 3.2 , contention
ri is considered for adjustment only if it increases, i.e. when either the number of processes
blocked on the words kept by CASNi increases or the number of words kept by CASNi

decreases. Therefore, in this implementation, which is described in Figure 9, the procedure
CheckingR is called not only from inside the procedure Locking as in the first algorithm,
but also from inside the procedure Help when the number of words locked by CASNi

reduces (line 5). In the second algorithm, the variable OP [i].blocked1 is an array of size N ,
the number of words need to be updated atomically by CASN. Each element of the array
OP [i].blocked[j] is updated in such a way that the number of CASNs blocked on each word
is known, and thus a process helping CASNi can calculate how many words need to be
released in order to release just enough words. To be able to perform this task, besides the
information about contention ri, which is calculated through variables blockedi and kepti,
the information about the highest ri so far and the number of words locked by CASNi at
the beginning of the transaction is needed. This additional information is saved in two new
fields of OP [i].state called rmax and init, respectively. While the init is updated only one
time at the beginning of the transaction (line 3 in CheckingR), the rmax field is updated

1. In our implementation, the array blocked is simple a 64-bit word such that it can be read in one atomic
step. In general, the whole array can be read atomically by a snapshot operation.
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type state type = record init; rmax; ul pos; state; end;
para type = record N : integer; addr: array[1..N ] of ∗word type ; exp, new: array[1..N ] of word type;

state: {Lock, Unlock, Succ, Fail, Ends, Endf}; blocked: array[1..N ] of 1..P ; end;
/* P: #processes; N-word CASN */

return type Help(helping, i, pos)
begin
start :
1: gs := LL(&OP [i].state);
2: if (ver 6= V ersion[i]) then return (Fail, nil);
3: if (gs.state = Unlock) then
4: Unlocking(i, gs.ul pos);
5: cr = CheckingR(i, OP [i].blocked, gs.ul pos, gs);
6: if (cr = Succ) then goto start;
7: else SC(&OP [i].state.state, Lock);
8: if (helping = i) then goto start;
9: else FAA(&OP [i].blocked[pos],−1);

return (Succ, nil);
else if (state = Lock) then

10: result := Locking(helping, i, pos);
if (result.kind = Succ) then

11: SC(&OP [i].state, (0, 0, 0, Succ));
else if (result = Fail) then

12: SC(&OP [i].state, (0, 0, 0, Fail));
else if (result.kind = Circle) then

13: FAA(&OP [i].blocked[pos],−1); return result;
goto start;

...
end.

value type Read(x)
begin
start :

y := LL(x);
while (y.owner 6= nil) do

Find index k: OP [y.owner].addr[k] = x;
ver = V ersion[y.owner];
if ( not V L(x)) then goto start;
Help(self, y.owner, k, ver); y := LL(x);

return (y.value);
end.

boolean CheckingR(owner, blocked, kept, gs)
begin

if (kept = 0) or (blocked = {0..0})) then
return Fail;

1: if ( not V L(&OP [owner].state)) then
return Fail;

for j := 1 to kept do nb := nb + blocked[j];

1’: r := nb
kept

; /*r is the current contention*/

if (r < m ∗ C) then return Fail; /* m = 1
N−1

*/

2: if (kept 6= gs.ul pos) then
/*At the beginning of transaction*/

d = kept ∗ 1
C
∗ r−m∗C

r−m
; ul pos := kept− d + 1;

3: SC(&OP [owner].state, (kept, r, ul pos, Unlock));
return Succ;

4: else if (r > gs.rmax) then
/*r is the highest contention so far*/

d = gs.init ∗ 1
C
∗ r−gs.rmax

r−m
;

ul pos := kept− d + 1;
5: SC(&OP [owner].state, (gs.init, r, ul pos, Unlock));

return Succ;
return Fail;

end.

Unlocking(i, ul pos)
begin

for j := OP [i].N downto ul pos do
e.addr = OP [i].addr[j]; e.exp = OP [i].exp[j];

again :
x := LL(e.addr);
if (not V L(&OP [i].state)) then return;
if (x = (e.exp, nil)) or (x = (e.exp, i)) then

if (not SC(e.addr, (e.exp, nil)) then
goto again;

return;
end.

Figure 9: Procedures Help, Unlocking, CheckingR in our second reactive multi-word
compare-and-swap algorithm and the procedure for Read operation

whenever the unlock-condition is satisfied (line 3 and 5 in CheckingR). The beginning of a
transaction is determined by comparing the number of word currently kept by the CASN,
kept, and its last unlock-position, gs.ul pos (line 2 in CheckingR). The values are different
only if the CASN has acquired more words since the last time it was blocked, and thus in
this case the CASN is at the beginning of a new transaction according to definition 3.1.

After calculating the number of words to be released, the position from which the
words are released is saved in field ul pos of OP [i].state and it is called ul posi. Conse-
quently, the process helping CASNi will only release the words from OP [i].addr[ul posi] to
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OP [i].addr[N ] through the procedure Unlocking. If CASNi satisfies the unlock-condition
even after a process has just helped it unlock its words, the same process will continue
helping the CASNi (line 5 and 6 in Help). Otherwise, if the process is not process pi, the
process initiating CASNi, it will return to help the CASN that was blocked by CASNi

before (line 9 in Help). The changed procedures compared with the first implementation
are Help, Unlocking and CheckingR, which are described in Figure 9.

5. Correctness Proof

In this section, we prove the correctness of our methods. Figure 10 briefly describes the
shared variables used by our methods and the procedures reading or directly updating them.

Mem OP[i].state OP[i].blocked
Help(helping, i, pos, ver) LL, SC FAA
Unlocking(i, ul point) LL, SC VL
Releasing(i) LL, SC VL
Updating(i) LL, SC VL
Locking(helping, i, pos) LL, SC VL FAA
CheckingR(owner, blocked, kept, gs) VL, SC
Read(x) LL

Figure 10: Shared variables with procedures reading or directly updating them

The array OP consists of P elements, each of which is updated by only one process, for
example OP [i] is only updated by process pi. Without loss of generality, we only consider
an element of array OP , OP [i], on which many concurrent helping processes get necessary
information to help a CASN, CASN j

i . The symbol CASN j
i denotes that this CASN uses

the variable OP [i] and that it is the jth time the variable is re-used, i.e. j = V ersion[i].
The value of OP [i] read by process pk is correct if it is the data of the CASN that blocks
the CASN helped by pk. For example, pk helps CASN j1

i1 and realizes the CASN is blocked
by CASN j

i . Thus, pk decides to help CASN j
i . But if the value pk read from OP [i] is the

value of the next CASN, CASN j+1
i , i.e. CASN j

i has completed and OP [i] is re-used for
another new CASN, the value that pk read from OP [i], is not correct for pk.

Lemma 5.1. Every helping process reads correct values of variable OP [i].

Proof. In our pseudo-code described in Figure 6, Figure 7 and Figure 9, the value of OP [i] is
read before the process checks V L(&OP [i].state) (line 1 in Unlocking, Releasing, Updating
and Locking). If OP [i] is re-used for CASN j+1

i , the value of OP [i].state has certainly
changed since pk read it at line 1 in procedure Help because OP [i] is re-used only if the
state of CASN j

i has changed into Ends or Endf . In this case, pk realizes the change
and returns to procedure Help to read the new value of OP [i].state (line 3 in Unlocking,
Releasing, Locking and line 4 in Updating). In procedure Help, pk will realize that OP [i]
is reused by checking its version (line 2 in Help) and return, that is pk does not use incorrect
values to help CASNs. Moreover, when pk decides to help CASN j

i at line 13 in procedure
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Locking, the version of OP [i] passed to the procedure Help is the correct version, that
is the version corresponding to CASN j

i , the CASN blocking the current CASN on word
e.addr. If the version pk read at line 9 in procedure Locking is incorrect, that is CASN j

i has
completed and OP [i] is re-used for CASN j+1

i , pk will realize this by checking V L(e.addr).
Because if CASN j

i has completed, the owner field of word e.addr will change from i to
nil. Therefore, pk will read the value of word e.addr again and realize that OP [i].state has
changed. In this case, pk will return and not use the incorrect data as argued above.

From this point, we can assume that the value of OP [i] used by processes is correct.
In our reactive compare-and-swap (RCASN) operation, the linearization point is the point
its state changes into Succ if it is successful or the point when the process that changes
the state into Fail reads an unexpected value. The linearization point of Read is the point
when y.owner == nil. It is easy to realize that our specific Read operation2 is linearizable
to RCASN. The Read operation is similar to those in [8][12].

Now, we prove that the interferences among the procedures do not affect the correctness
of our algorithms.

We focus on the changes of OP [i].state. We need to examine only four states: LOCK,
UNLOCK, SUCCESS and FAILURE. State END is only used to inform whether the
CASN has succeeded and it does not play any role in the algorithm. Assume the latest
change occurs at time t0. The processes helping CASNi are divided into two groups: group
two consists of the processes detecting the latest change and the rest are in group one.
Because the processes in the first group read a wrong state ( it fails to detect the latest
change), the states they can read are LOCK or UNLOCK, i.e. only the states in phase
one.

Lemma 5.2. The processes in group one have no effect on the results made by the processes
in group two.

Proof. To prove the lemma, we consider all cases where a process in group two can be
interfered by processes in group one. Let pj

l denote process pl in group j. Because the
shared variable OP [i].block is only used to estimate the contention level, it does not affect
the correctness of CASN returned results. Therefore, we only look at the two other shared
variables Mem and OP [i].state.

Case 1.1 : Assume p1
k interferes with p2

l while p2
l is executing procedure Help or CheckingR.

Because these procedures only use the shared variable OP [i].state, in order to interfere
with p2

l p1
k must update this variable, i.e. p1

k must also execute one of the procedures
Help or CheckingR. However, because p1

k does not detect the change of OP [i].state
(it is a member of the first group), the change must happen after p1

k read OP [i].state
by LL at line 1 in Help, and consequently it will fail to update OP [i].state by SC.
Therefore, p1

k cannot interfere p2
l while p2

l is executing procedure Help or CheckingR,
or in other words, p2

l cannot be interfered through the shared variable OP [i].state.

2. The Read procedure described in figure 9 is used in both reactive CASN algorithms
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Case 1.2 : p2
l is interfered through a shared variable Mem[x] while executing one of

the procedures Unlocking, Releasing, Updating and Locking. Because OP [i].state
changed after p1

k read it and in the new state of CASNi p2
l must update Mem[x], the

state p1
k read can only be Lock or Unlock. Thus, the value p1

k can write to Mem[x]
is (OP [i].exp[y], i) or (OP [i].exp[y], nil), where OP [i].addr[y] points to Mem[x]. On
the other hand, p1

k can update Mem[x] only if it is not acquired by another CASN,
i.e. Mem[x] = (OP [i].exp[y], nil) or Mem[x] = (OP [i].exp[y], i).

• If p1
k wants to update Mem[x] from (OP [i].exp[y], i) to (OP [i].exp[y], nil), the

state p1
k read is Unlock. Because only state Lock is the subsequent state from

Unlock, the correct state p2
l read is Lock. Because some processes must help the

CASNi successfully release necessary words, which include Mem[x], before the
CASNi could change from Unlock to Lock, p1

k fails to execute SC(&Mem[x],
(OP [i].exp[y], nil)) (line 4 in Unlocking, Figure 7) and retries by reading Mem[x]
again (line 2 in Unlocking). In this case, p1

k observes that OP [i].state changed
and gives up (line 3 in Unlocking).

• If p1
k wants to update Mem[x] from (OP [i].exp[y], nil) to (OP [i].exp[y], i), the

state p1
k read is Lock. Because the current value of Mem[x] is (OP [i].exp[y], nil),

the current state p2
l read is Unlock or Failure.

– If p1
k executes SC(&Mem[x], (OP [i].exp[y], i)) (line 5 in Locking, Figure 6)

before p2
l executes SC(&Mem[x], (OP [i].exp[y], nil)) (line 4 in Unlocking/

Releasing, Figure 7), p2
l retries by reading Mem[x] again (line 2 in Unlocking/

Releasing) and eventually updates Mem[x] successfully.
– If p1

k executes SC(&Mem[x], (OP [i].exp[y], i)) (line 5 in Locking) after p2
l ex-

ecutes SC(&Mem[x], (OP [i].exp[y], nil)) (line 4 in Unlocking/Releasing),
p1

k retries by reading Mem[x] again (line 2 in Locking). Then, p1
k observes

that OP [i].state changed and gives up (line 3 in Locking).

Therefore, we can conclude that p1
k cannot interfere with p2

l through the shared variable
Mem[x], which together with case 1.1 results in that the processes in group one cannot
interfere with the processes in group two via the shared variables.

Lemma 5.3. The interferences between processes in group two do not violate linearizability.

Proof. On the shared variable OP [i].state, only the processes executing procedure Help or
CheckingR can interfere with one another. In this case, the linearization point is when
the processes modify the variable by SC. On the shared variable Mem[x], all processes in
group two will execute the same procedure such as Unlocking, Releasing, Updating and
Locking, because they read the latest state of OP [i].state. Therefore, the procedures are
executed as if they are executed by one process without any interference. In conclusion, the
interferences among the processes in group two do not cause any unexpected result.

From Lemma 5.2 and Lemma 5.3, we can infer the following corollary:

Corollary 5.1. The interferences among the procedures do not affect the correctness of our
algorithms.
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Lemma 5.4. A CASNi blocks another CASNj at only one position in Mem for all times
CASNj is blocked by CASNi.

Proof. Assume towards contradiction that CASNj is blocked by CASNi at two position x1

and x2 on the shared variable Mem, where x1 < x2. At the time when CASNj is blocked
at x2, both CASNi and CASNj must have acquired x1 already because the CASN tries to
acquire an item on Mem only if all the lower items it needs have been acquired by itself.
This is a contradiction because an item can only be acquired by one CASN.

Lemma 5.5. The algorithms are lock-free.

Proof. We prove the lemma by contradiction. Assume that no CASN in the system can
progress. Because in our algorithms a CASN operation cannot progress only if it is blocked
by another CASN on a word, each CASN operation in the systems must be blocked by
another CASN on a memory word. Let CASNi be the CASN that acquired the word wh

with highest address among all the words acquired by all CASNs. Because the N words are
acquired in the increasing order of their addresses, CASNi must be blocked by a CASNj

at a word wk where address(wh) < address(wk). That mean CASNj acquired a word wk

with the address higher than that of wh, the word with highest address among all the words
acquired by all CASN. This is contradiction.

The following lemmas prove that our methods satisfy the requirements of online-search
and one-way trading algorithms [4].

Lemma 5.6. Whenever the average contention on acquired words increases during a trans-
action, the unlock-condition is checked.

Proof. According to our algorithm, in procedure Locking, every time a process increases
OP [owner].blocked, it will help CASNowner. If the CASNowner is in a transaction, i.e. being
blocked by another CASN, for instance CASNj , the process will certainly call CheckingR
to check the unlock-condition. Additionally, in our second method the average contention
can increase when the CASN releases some of its words and this increase is checked at line
5 in procedure Help in figure 9.

Lemma 5.6 has the important consequence that the process always detects the average
contention on the acquired words of a CASN whenever it increases, so applying the online-
search and one-way trading algorithms with the value the process obtains for the average
contention is correct according to the algorithm.

Lemma 5.7. Procedure CheckingR in the second algorithm computes unlock-point ul point
correctly.

Proof. Assume that process pm executes CASNi and then realizes that CASNi is blocked
by CASNj on word OP [i].addr[x] at time t0 and read OP [i].blocked at time t1. Between
t0 and t1 the other processes which are blocked by CASNi can update OP [i].blocked.
Because CheckingR only sums on OP [i].blocked[k], where k = 1, .., x − 1, only processes
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blocked on words from OP [i].addr[1] to OP [i].addr[x−1] are counted in CheckingR. These
processes updating OP [i].blocked is completely independent of the time when CASNi was
blocked on word OP [i].addr[x]. Therefore, this situation is similar to one where all the
updates happen before t0, i.e. the value of OP [i].blocked used by CheckingR is the same
as one in a sequential execution without any interference between the two events that
CASNi is blocked and that OP [i].blocked is read. Therefore, the unlock-condition is checked
correctly. Moreover, if CASNi’s state is changed to Unlock, the words from OP [i].addr[x]
to OP [i].addr[N ] acquired by CASNi after time t0 due to another process’s help, will be
also released. This is the same as a sequential execution: if CASNi’s state is changed to
Unlock at time t0, no further words can be acquired.

6. Evaluation

We compared our algorithms to the two best previously known alternatives: i) the lock-free
algorithm presented in [12] that is the best representative of the recursive helping policy
(RHP), and ii) the algorithm presented in [14] that is an improved version of the software
transactional memory [16] (iSTM). In the latter, a dummy function that always returns zero
is passed to CASN. Note that the algorithm in [14] is not intrinsically wait-free because
it needs an evaluating function from the user to identify whether the CASN will stop and
return when the contention occurs. If we pass the above dummy function to the CASN, the
algorithm is completely lock-free.

Regarding the multi-word compare-and-swap algorithm in [8], the lock-free memory
management scheme in this algorithm is not clearly described. When we tried to implement
it, we did not find any way to do so without facing live-lock scenarios or using blocking
memory management schemes. Their implementation is expected to be released in the
future [9], but was not available during the time we performed our experiments. However,
relying on the experimental data of the paper [8], we can conclude that this algorithm
performs approximately as fast as iSTM did in our experiments, in the shared memory size
range from 256 to 4096 with sixteen threads.

The system used for our experiments was an ccNUMA SGI Origin2000 with thirty two
250MHz MIPS R10000 CPUs with 4MB L2 cache each. The system ran IRIX 6.5 and it was
used exclusively. An extra processor was dedicated for monitoring. The Load-Linked (LL),
Validate (VL) and Store-Conditional (SC) instructions used in these implementations were
implemented from the LL/SC instructions supported by the MIPS hardware according to
the implementation shown in Figure 5 of [13], where fields tag and val of wordtype were 32
bits each. The experiments were run in 64-bit mode.

The shared memory Mem is divided into N equal parts, and the ith word in N words
needing to be updated atomically is chosen randomly in the ith part of the shared memory
to ensure that words pointed by OP [i].addr[1]...OP [i].addr[N ] are in the increasing order
of their indices on Mem. Paddings are inserted between every pair of adjacent words in
Mem to put them on separate cache lines. The values that will be written to words of
Mem are contained in a two-dimensional array V alue[3][N ]. The value of Mem[i] will be
updated to V alue[1][i], V alue[2][i], V alue[3][i], V alue[1][i], and so on, so that we do not
need to use the procedure Read, which also uses the procedure Help, to get the current
value of Mem[i]. Therefore, the time in which only the CASN operations are executed
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is measured more accurately. The CPU time is the average of the useful time on each
thread, the time only used for CASNs. The useful time is calculated by subtracting the
overhead time from the total time. The number of successful CASNs is the sum of the
numbers of successful CASNs on each thread. Each thread executing the CASN operations
precomputes N vectors of random indices corresponding to N words of each CASN prior
to the timing test. In each experiment, all CASN operations concurrently ran on thirty
processors for one minute. The time spent on CASN operations was measured.

The contention on the shared memory Mem was controlled by its size. When the size
of shared memory was 32, running eight-word compare-and-swap operations caused a high
contention environment. When the size of shared memory was 16384, running two-word
compare-and-swap operations created a low contention environment because the probability
that two CAS2 operations competed for the same words was small. Figure 11 shows the
total number of CASN and the number of successful CASN varying with the shared memory
size. We think this kind of chart gives the reader a good view on how each algorithm behaves
when the contention level varies by comparing the total number of CASN and the number
of successful CASN.

6.1 Results

The results show that our CASN constructions compared to the previous constructions are
significantly faster for almost all cases. The left charts in Figure 11 describes the number
of CASN operations performed in one second by the different constructions.

In order to analyze the improvements that are because of the reactive behavior, let us
first look at the results for the extreme case where there is almost no contention and the
reactive part is rarely used: CAS2 and the shared memory size of 16384. In this extreme
case, only the efficient design of our algorithms gives the better performance. In the other
extreme case, when the contention is high, for instance the case of CAS8 and the shared
memory size of 32, the brute force approach of the recursive helping scheme (RHP) is the
best strategy to use. The recursive scheme works quite well because in high contention
the conflicts between different CASN operations can not be really solved locally by each
operation and thus the serialized version of the recursive help is the best that we can
hope for. Our reactive schemes start helping the performance of our algorithms when the
contention coming from conflicting CASN operations is not at its full peak. In these cases,
the decision on whether to release the acquired words plays the role in gaining performance.
The benefits from the reactive schemes come quite early and drive the performance of our
algorithms to reach their best performance rapidly. The left charts in Figure 11 shows that
the chart of RHP is nearly flat regardless of the contention whereas those of our reactive
schemes increase rapidly with the decrease of the contention.

The right charts in Figure 11 describes the number of successful CASN operations per-
formed in one second by the different constructions. The results are similar in nature with
the results described in the previous paragraph. When the contention is not at its full peak,
our reactive schemes catch up fast and help the CASN operations to solve their conflicts
locally.

Both figures show that our algorithms outperform the best previous alternatives in
almost all cases. At the memory size 16384 in the left charts of Figure 11:
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Figure 11: The numbers of CAS2s, CAS4s and CAS8s and the number of successful CAS2s,
CAS4s and CAS8s in one second

CAS2 : the first reactive compare-and-swap (1stRCAS) and the second one (2ndRCAS)
are about seven times and nine times faster than both RHP and iSTM, respectively.

CAS4 : both RCAS are four times faster than both RHP and iSTM.

CAS8 : both RCAS are two times faster than both RHP and iSTM.
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Regarding the number of successful CASN operations, our RCAS algorithms still out-
perform RHP and iSTM in almost all cases. Similar to the above results, at the memory
size of 16384 in the right charts of Figure 11, both reactive compare-and-swap operations
perform faster than RHP and iSTM from two to nine times.

7. Conclusions

Multi-word synchronization constructs are important for multiprocessor systems. Two re-
active, lock-free algorithms that implement multi-word compare-and-swap operations are
presented in this paper. The key to these algorithms is for every CASN operation to mea-
sure in an efficient way the contention level on the words it has acquired, and reactively
decide whether and how many words need to be released. Our algorithms are also designed
in an efficient way that allows high parallelism —both algorithms are lock-free— and most
significantly, guarantees that the new operations spend significantly less time when ac-
cessing coordination shared variables usually accessed via expensive hardware operations.
The algorithmic mechanism that measures contention and reacts accordingly is efficient
and does not cancel the benefits in most cases. Our algorithms also promote the CASN
operations that have higher probability of success among the CASNs generating the same
contention. Both our algorithms are linearizable. Experiments on thirty processors of an
SGI Origin2000 multiprocessor show that both our algorithms react quickly according to
the contention conditions and significantly outperform the best-known alternatives in all
contention conditions.

In the near future, we plan to look into new reactive schemes that may further improve
the performance of reactive multi-word compare-and-swap implementations. The reactive
schemes used in this paper are based on competitive online techniques that provide good
behavior against a malicious adversary. In the high performance setting, a weaker adversary
model might be more appropriate. Such a model may allow the designs of schemes to exhibit
more active behavior, which allows faster reaction and better execution time.
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