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Abstract 

In this paper, we describe several enhancement techniques to improve the state-of-the-art 

stream prefetcher. First, the enhanced stream prefetcher takes streams with long stride into 

consideration to avoid wasteful prefetches. Second, accessing a node in a tree or graph structure 

may have a different direction than the traversal direction through the structure. The enhanced 
stream prefetcher eliminates this type of noise for establishing the stream. Third, regular streams 

for array accesses are often repeated. Initiating penalty can be avoided by early re-establishing a 

repeated stream. Fourth, an established stream may be dead before being removed from the stream 

prefetching table. A dead stream removal scheme reduces inaccurate prefetches. Performance 

evaluations based on SPEC applications show that the enhanced stream prefetcher improves 38%, 

42%, and 55% of CPI for the three tested cache configurations provided by the 1st JILP Data 

Prefetching Championship Committee [19] with respect to the base design without prefetching. In 

comparison with the original stream prefetcher, the improvements are 2%, 18%, and 19% 

respectively. 

1. Introduction 

With fast advances in processor technology, the speed gap has been continuously widening 
between processors and main memory. It usually takes hundreds of processor cycles to access the 

off-die memory. Caches play a critical role in bridging this performance gap by retaining the 

recent accessed instructions and data for fast accesses. Recently, many advanced caching 
mechanisms have been proposed for on-die CMP caches [1, 2, 3, 4]. However, due to limited 

cache capacity, the required working set of applications may not fit into the cache and causes 

frequent accesses to memory.  
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Prefetching is an important mechanism to reduce memory access penalty. Existing data 

prefetching methods are based on two general behaviors of the missing block addresses: 
regularity and correlation. Existing sequential [5], stride [6, 7], distance [8, 9, 10] and regular 

stream [11, 12] prefetchers dynamically capture the regularity of a sequence of missing block 

addresses to speculatively prefetch subsequent blocks. Correlation-based prefetchers, such as 

correlated [13], Markov [14], hot-stream [15], temporal streaming [16], spatial-streaming [17] 
and a combination of temporal/spatial streaming [18] prefetchers, on the other hand, record the 

history of nearby missing addresses to trigger prefetches assuming such miss correlations will be 

repeated. This approach, however, incurs a significant space overhead for the miss history. 

Among the regularity-based prefetchers, the stream prefetcher captures a sequence of nearby 

misses when their addresses follow the same positive or negative direction in a small memory 
region. Once a stream is identified, a demand miss targeting the current active stream triggers 

prefetches of consecutive blocks in the detected direction. Two key parameters: prefetch distance 

and degree control the aggressiveness of stream prefetching. The prefetch distance defines the 
stream monitor region and how far ahead to trigger the prefetch. The prefetch degree defines the 

number of consecutive blocks to be prefetched. Due to its simplicity and effectiveness, the stream 

prefetcher has been implemented in commercial processors [11, 12].  

In this paper, we evaluate several enhancement techniques for optimizing a stream prefetcher. 

First, the stream prefetcher is augmented with a stride distance. Upon detecting memory accesses 
with a constant stride (measured in bytes) of longer than one block, the stream prefetcher 

prefetches blocks according to the detected stride. Second, we observe that in a few applications, 

accessing a data structure through pointers such as trees and graphs, each node in the data 
structure may occupy more than one block. Hence, accesses within a node may have a different 

addressing direction than the traversal direction through the nodes. When such a case is detected, 

we allow a stream to be formed by ignoring the noise, i.e. an adjacent block access in the opposite 

direction. Third, we observed that regular streams for array accesses are often repeated. To reduce 
the penalty of re-initiating a stream, we allow a previous repeated stream to launch again after the 

old stream is caught up by a new stream. Fourth, a short stream may be dead before being 

replaced from the stream table. Subsequent hits to a dead stream initiates inaccurate prefetching 
without going through the needed training stage. Detecting and removing aging short streams 

from the stream table leads to more accurate prefetching. 

Performance evaluations based on a set of SPEC2000 and SPEC2006 benchmarks show that 

the enhanced stream prefetcher makes significant improvement over the original stream 

prefetcher. For the three L2 cache configurations listed in Table 1, the enhanced stream prefetcher 
improves 38%, 42%, and 55% of their Cycle-Per-Instructions (CPIs) with respect to the base 

design without prefetching. In comparison with the original stream prefetcher, the improvements 

are 2%, 18%, and 19% respectively.  

The remainder of this paper is organized as follows. Section  2 provides the basic design of 

stream prefetcher. Section  3 describes the benefit of constant stride, stream repetition, as well as 

the challenge in handling stream noise and dead stream removal. Section  4 describes the details of 

the enhancement techniques. Section  5 provides the evaluation methodology and Section  6 

presents the evaluation results. Related work is given in Section  7 followed by a brief conclusion 

in Section  8.  
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2. Stream Prefetcher Basics 

 

Figure 1: Basic design of a Stream Prefetcher. 

The stream prefetcher we model is based on the one presented in [11] which is originated from 

the IBM POWER4 processor [12]. The stream prefetcher uses a stream table to keep track of 
multiple access streams. All established streams (also referred as trained streams) in the stream 

table are monitored against the cache misses. When an incoming memory request falls into the 

current monitor window of a trained stream, the stream prefetcher prefetches consecutive blocks 

according to the direction of the trained stream.  

A demand missing block address enters the stream table in an untrained state if the missing 

block has not been recorded. An untrained stream becomes trained based on the following 
conditions. First, the next two consecutive misses located in the same memory region as an 

untrained miss are examined. In the design reported in [11], the memory region covers 16 blocks 

before and after the original missing block. Second, these three consecutive misses are in the 
same ascending or descending direction starting from the original miss.  

The aggressiveness of a stream prefetcher is controlled by the distance and the degree of the 
stream as illustrated in Figure 1. The original miss address and the current stream window defined 

by the start and the end block address of each trained stream are recorded in the stream table. The 

number of blocks from the start to the end blocks determines the prefetch distance, which 
indicates the stream monitor region as well as controls how far ahead of the demand access 

stream that the prefetcher can prefetch. The prefetch degree, on the other hand, controls the 

number of consecutive blocks for each stream prefetcher. When a new memory request falls into 
the current monitored region of a trained stream, the stream prefetcher prefetches the next n 

consecutive blocks starting from the end of the monitored region, where n is the prefetch degree. 

Afterwards, the monitored start and end address are advanced by n blocks to keep the stream 

moving along the stream direction. 
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3. Stream Enhancement Techniques 

3.1. Constant Stride Optimization 

 

Figure 2: Code segment from scanner.c in SPEC2000 Benchmark art.  

The first enhancement is to integrate long-stride prefetching into the stream prefetcher. In the 
original stream prefetcher, streams are prefetched by consecutive blocks. In real applications, it is 

not uncommon that memory accesses are followed a constant stride across multiple blocks. 

Although such long-stride accessing patterns can be captured by a stream prefetcher, stream 
prefetching of consecutive blocks wastes memory bandwidth and pollutes the caches. For 

example, in examining scanner.c in art from SPEC2000 Benchmark (Figure 2), we can identify a 

constant-stride access pattern across multiple blocks. Note that the memory references in this 
routine causes 80% of all misses in art on the baseline 1MB L2 cache without prefetching. As 

shown in the memory allocation part, the size of each element of the two arrays bus and tds is 88 

bytes.  Each element of two arrays are allocated one-by-one in a round-robin fashion. Therefore, 

two adjacent elements in bus are 192 bytes apart after padding the arrays with 16 bytes.  Given a 
cache line size of 64 bytes, consecutive accesses to array bus span across 3 blocks since 

&bus[i+1][j] - &bus[i][j] = 192 bytes. As a result, 2 out of 3 prefetched blocks are wasted by the 

original stream prefetcher.  

In the enhanced stream prefetcher, a straight-forward solution dynamically detects the stride 

distance information. If a constant stride is detected, instead of prefetching consecutive blocks, 
the constant stride is used to calculate the correct blocks to avoid extra prefetches. More design 

details will be given in the next section. 

3.2.  Noise Removal  

In training a stream in a stream prefetcher [11, 12], three consecutive misses addressing in a small 

memory region are examined. These three misses must follow the same ascending or descending 

direction to successfully train the stream. When a training stream fails, it is likely that two 

Memory Allocation: 

   for (i=0;i<numf1s;i++) {  

    //numf1s = 10000,numf2s = 11 

 bus[i] = (double *)malloc(numf2s*sizeof(double)); 

    tds[i] = (double *)malloc(numf2s*sizeof(double)); 

   } 

 

Memory Access: 

   for (tj=0;tj<numf2s;tj++) { 

    … 

    for (ti=0;ti<numf1s;ti++) 

               Y[tj].y += f1_layer[ti].P * bus[ti][tj]; 

   } 



ENHANCEMENTS FOR ACCURATE AND TIMELY STREAMING PREFETCHER 

5 

consecutive misses are addressing memory blocks from the opposite directions with respect to the 

first miss. After examining the unsuccessfully trained streams in soplex, it is interesting to see 
that out of 11484 unsuccessfully trained streams, 7343 are due to an access to the next adjacent 

block in the positive direction (i.e. a positive distance of one block). We traced the memory 

reference pattern of soplex, and found it behaves as illustrated in Figure 3. Although the overall 

direction of the stream is descending, the positive one-block jumps keep preventing the stream 
from being trained. 

To remedy this problem, we allow a training stream to stay untrained when the subsequent 

miss occurs in the opposite direction from the current miss and one of the misses in the opposite 

direction is accessing the adjacent block. In other words, the adjacent block access is considered 

as noise and is ignored in training the stream as illustrated in Figure 3. 

 

Figure 3: An abstract example of stream training with noise removal. 

3.3. Early Launch of Repeat Stream  

Besides the constant stride accesses in scanner.c (Figure 2), we also observe that a stream access 
is often repeated. In the nested loop of the example, the streaming array bus is accessed 

repeatedly 11 times with exactly the same start and end addresses. In addition, the repetition of 

the streaming accesses is separated only by a few instructions. It is beneficial to initiate the 
stream prefetching again from the recorded original stream address when the current stream is 

coming to an end. By keeping previous long streams in the stream table, we can detect repeated 

streams once two streams overlap in the monitored region. Early launching a repeated stream can 

reduce the penalty of initiating a new stream prefetching. 

3.4. Dead Steam Removal  

Given the relatively loose condition in training a stream as described in Section  2, many streams 
can be established even if they are not an accurate stream for prefetching. Furthermore, we also 

observe that for many short streams that remain inactive for a long period of time, the stream 

likely has come to an end. These dead streams may still stay in the stream table and can 
accidentally catch an incoming memory access to trigger prefetches. These incorrect prefetches 

pollute the cache and waste memory bandwidth.  

The number of dead streams in the stream table goes up with the table size. Simulation results 

show that with a 128-entry stream table, roughly 88% and 62% of the trained streams have stayed 

in the table longer than 100K cycles without triggering any prefetches respectively for art and 
ammp. When a prefetched block is triggered by an old stream that has not triggered any prefetch 

over 100K cycles, it is useless 92% of the time. 
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Figure 4: Flowchart of enhanced stream training and prefetching. 

Although a smaller stream table can naturally replace streams before they die, smaller tables 

may suffer insufficient space to keep all the active streams. Hence, by removing dead streams 

dynamically based on their ages in a reasonable-size stream table, the active streams can likely be 

maintained without holding many dead streams and causing incorrect prefetches. 

4. Enhanced Stream Prefetcher Design   

In this section, we describe the detailed designs and operations of integrating the four 

enhancement techniques into the original stream prefetcher. The same two steps: training and 

prefetching are performed in the enhanced stream prefetcher. In the training stage, the noise 
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removal technique is integrated to screen accesses with the noise behavior as shown in Figure 3. 

In the prefetching stage, correct memory blocks with constant-stride accesses are detected and 
prefetched. In addition, repeated streams are captured and triggered earlier when the current 

stream catches up an existing stream in the stream table. Furthermore, dead streams are removed 

from the stream table based on the stream age.  

Error! Reference source not found. shows the flowchart of the enhanced stream 

prefetching. The basic designs and data structures are given in the following subsections. Note 
that for simplicity, we use separate training and streaming tables in the respective stages. They 

can be combined into a unified table. 

4.1. Stream Training 

Noise Flag

1 bit

Direction

1 bit

3
rd
Miss

5 bits

2
nd
Miss

5 bits

1
st
Miss

26 bits

 

Figure 5: Training table entry.  

Each entry in training table is depicted in Figure 5. Three consecutive misses in a small training 

window need to be captured for stream training. All the misses are represented by cache block 
addresses, with 26 bits for cache block address of the 1

st
 miss, and 5 bits representing a distance 

of +/- 16 blocks from the 1
st
 miss to the 2

nd
 miss or the 3

rd
 miss. Hence the training window of 

each stream has 32 blocks. Direction is an indicator of an ascending or descending stream. The 
Noise Flag marks the activation of the noise removal in training. The training stage follows 

several steps. 

1. When a cache miss occurs, both the training and the stream tables are searched. If the miss 

falls into the monitored region of a trained stream, the miss will not be trained again.  

2. If the miss block does not fall into any training window (i.e. within positive and negative 16 

blocks of the recorded miss) in the training table, a new entry is created to record the new 

miss for training and the LRU entry is replaced.  

3. If the miss is within a training window of a recorded miss, three actions are followed.  

a. Record the block distance from the 1
st
 miss in case the miss is the 2

nd
 miss of the 

training stream. 

b. If the 3
rd

 miss is detected and all three misses are following the same direction, the 

stream is trained and is moved to the stream table for prefetching. 

c. If the three misses are not in the same direction, there are two conditions. 

i. If an access to the adjacent block is detected which is in the opposite 

direction of the stream training, such an access is treated as a noise and 
removed.  

ii. If the three misses do not satisfy the noise removal condition, the 2
nd

 miss 
and the 3

rd
 miss replace the 1

st
 miss and the 2

nd
 miss in the corresponding 

training stream for continuing the training. 
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4.2. Stream Prefetching 

 

Figure 6: Stream table entry. 

After a stream is successfully trained, the stream is moved from training table to stream table. The 

information recorded in each stream table entry is given in Figure 6. Orig Addr is the cache block 

address of the 1
st
 miss from the training table. Start Addr and End Addr form the monitored 

region, with 32-bit full address for End Addr, and 9 bits of block distance from Start Addr to End 

Addr. Last Addr records the actual last memory access in form of byte distance from End Addr 

for the purpose of detecting constant stride accesses. Direction is the indicator of an ascending or 

descending stream. Stride records the last stride distance in bytes. StrEn flag enables stride 
prefetching based on the detected stride distance. Repeat flag is used to mark a repeated stream. 

Finally, TimeStamp stores the age in CPU cycles of the last stream prefetching triggered by the 

recorded stream. The enhanced stream prefetching follows several steps. 

1. When a memory access falls into the monitored region of a trained stream, stream prefetching 

of subsequent n blocks is triggered where n is the prefetch degree. The prefetching starts from 
the block following the End_Addr according to the stream direction for n consecutive blocks.  

2. A stream with constant-stride over the length of one block can be detected dynamically and 

used for accurate stride prefetching. When a memory access occurs in the monitored region of 

a trained stream, the memory address is saved in Last Addr, and the access stride in byte 

granularity is recalculated. In case the new Stride matches the previous Stride, the StrEn flag is 
turned on and the subsequent prefetches will be based on the recorded Stride. Note that 

whenever a new Stride mismatches the recorded Stride, the StrEn flag is turned off and the 

prefetcher is reset to the stream prefetching of consecutive blocks. 

3. The detection and early prefetching of repeated streams work as follows. When the forwarded 

monitored region of an active stream overlaps with the monitored region of another inactive 
stream in the stream table, a repeated stream is discovered under two conditions. First, the two 

streams have their starting addresses closely to each other, i.e., the two streams start from 

nearby addresses. Second, both streams are long streams which cover more than 256 blocks. 
Upon discovery of such a repeated stream, prefetching of the inactive stream is triggered from 

its original address. 

4. The age of an existing stream is used to identify and remove potential dead streams from the 

stream table, where the age is measured from the last time when a stream prefetching is 

triggered. A global TimeStamp is used to calculate the stream age. The current TimeStamp is 
saved into the stream table whenever a memory access occurs to a stream. The age of all the 

streams in the stream table are checked periodically. The potential dead stream is identified 

and removed when the stream has been idled for a long period time (> 10K cycles) and the 

stream is a short stream covering less than 256 blocks.  
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5. Evaluation Methodology 

To demonstrate the advantages of the enhanced stream prefetcher, we selected twelve 

benchmarks with high L2 Misses-Per-Kilo-Instructions (MPKI) from SPEC2000 and SPEC2006. 
Trace-driven simulations were carried out using the CMPsim tool set provided by the 1

st
  JILP 

Data Prefetching Championship competition committee [19]. The traces were collected from each 

benchmark by fast-forwarding 40 billion instructions, and then collected traces for the next 100 

million instructions.   

Table 1: Simulator Configuration. 

Issue width 4 

Instruction Window 128 entries 

L1 cache 32KB, 8-way,I/D caches, 1 cycle 

L2 cache 512KB/2MB, 16-way, 20 cycles 

Memory latency 200 cycles 

Configuration 1 (c1) 2MB L2, 1000 requests/cycle 

Configuration 2 (c2) 2MB L2, 1 request/10 cycles 

Configuration 3 (c3) 512KB L2, 1000 requests/cycle 

 

Table 2: Prefetcher Configurations. 

Prefetcher Table configuration Size  

GHB-distance 256 IT entries, 256 GHB entries 4KB 

Stream 16 combined entries 128B 

Enhanced-Stream 8 training entries, 8 stream entries 256B 

 

The simulation framework models an out-of-order core with the basic parameters as outlined 

in Table 1. Two L2 cache sizes and two memory bandwidths are considered resulting in three L2 

cache configurations.  

We evaluate and compare three prefetch schemes, including the PC-based Distance 

prefetcher using a Global History Buffer (GHB-Distance) [9], the original Stream prefetcher 
(Stream) [11] and the Enhanced Stream prefetcher (Enhanced-Stream). All prefetchers prefetch 

memory blocks directly into the L2 cache. The simulated table sizes for the three prefetchers are 

given in Table 2. Both the prefetch width and depth for GHB-distance are 16 and the prefetch 
degree and distance are 4 and 64, respectively, for both stream-based prefetchers. Under the 

allowed space budget, we simulate multiple table sizes for maintaining the stream history and 

selected the size that demonstrates the highest performance for both stream-based prefetchers. For 

achieving the best performance, the results show that both stream prefetchers require very little 
history information. 
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6. Experimental Results  

6.1. Performance of Enhanced-Stream Prefetcher 

Figure 7 shows the normalized CPI comparison of the three prefetching schemes where the CPIs 

are normalized to the baseline design without any prefetching. In this figure, the twelve selected 

benchmarks are sorted from left to right in the descending order of the MPKI. We can make 

several important observations. First, on the arithmetic average of all workloads, the performance 
improvements over the base CPI are 27%, 37%, and 38% for GHB-Distance, Stream, and 

Enhanced-Stream prefetchers for the c1 configuration, 16%, 29%, and 42% for the c2 

configuration, and 26%, 44%, and 55% for the c3 configuration, respectively. Overall, Enhanced-

Stream outperforms GHB-Distance and Stream respectively by about 30% and 14%.  

 

Figure 7: CPI comparisons for the three prefetching schemes. 

Second, among the four enhancement techniques, stride prefetching gains the most benefit. 

For art and mcf, the performance gains from stride prefetching are about 45% and 28%,  

respectively, revealing that stream prefetching of consecutive blocks is wasteful and inaccurate in 
these applications. 

Third, different benchmarks show very different results with respect to the three prefetching 

schemes. Enhanced-Stream is most effective for art and mcf which have the highest MPKI and 

most beneficial from stride prefetching. Early prefetching of repeated stream works well for art 

with about 6% improvement on 512KB L2 cache. The noise removal scheme shows some 
impacts on soplex for a minor performance gain about 1%. The dead stream removal scheme is 

very effective in many applications when large stream tables are used. We will show the 

sensitivity study results in Section  6.2. 

Fouth, GHB-Distance performs worse than the other two schemes for most applications. 
However, it shows slight edge over stream-based prefetchers on ammp and omnetpp. This is due 

to the long and constant distances are covered in the GHB-Distance prefetcher. 

Finally, we also observe that integrations of multiple enhancement techniques may cause 

performance interferences among one another. The results in Figure 7 are simulated with the 

combination of all four enhancement techniques. 
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6.2. Sensitivity Study 

The sizes of the training table and the stream table impact the overall prefetch performance. In 

Figure 8, we collect the average CPI simulated with the three cache configurations listed in Table 

1, and compare different combinations of various table sizes in Enhanced-Stream. For the stream 

table, we simulate six table sizes with 4, 8, 16, 32, 64, and 128 entries. For each stream table size, 
we simulate three associated training table sizes with the number of entries equal to the same, 

double, and quadruple of the stream table size.  

The results are plotted in Figure 8, where the notation n / m1, m2, m3 represents the size of 

the stream table (n) and three associated training table sizes (m1, m2, m3).  It is interesting to 

observe that the stream table of 8 entries has the lowest overall CPI indicating the number of 
active streams is very small in all applications. Increasing the stream table size beyond 8 degrades 

the performance. This is due to the fact that many inactive streams are kept in the stream table 

and cause inaccurate prefetching. When the number of the stream table entries reduce to 4, the 
insufficient space to hold all active streams reduce the overall improvement. We can also observe 

that the performance improvement is rather insensitive to the training table size.  

 

Figure 8: Sensitivity on stream history table sizes. (Notation: size = stream table size / three 

training table sizes). 

We also evaluate the effectiveness of dead stream removal with different stream table sizes as 

shown in Figure 9. The left figure shows the average performance with the three cache 

configurations for all the workloads, with three dead stream removal techniques: no removal, 
removal streams with the age of 100K cycles, and removal streams with the age of 10K cycles. 

As can be observed, when stream table size is larger than 8, dead stream removal is effective in 

reducing the damage of inaccurate dead-stream prefetching. However, when the stream table size 

reduces to 8 or smaller, dead stream removal has very little impact. This is due to the fact that 
small table sizes can naturally replace dead streams dynamically.  

Optimal stream table size is not always the same for individual workloads. The right figure in 

Figure 9 demonstrates that optimal stream table size varies from 4 to 64 for individual workloads. 

For example, with 16 stream entries, swim can improve 5% over 8 stream entries. Hence in 

practice, it would be a better choice to have a relatively large stream table integrated with an 
effective dead stream removal scheme. 
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Figure 9: Overall (left figure) and individual (right figure) performance for Dead Stream 
Removal. ES-DSR-NA is without Dead Stream Removal, ES-DSR-100k/10k are with 

Dead Stream Removal and dead streams are defined as having been inactive for more 

than 100k/10k CPU cycles. 

7. Related Work 

There have been many software and hardware based prefetching methods to alleviate 

performance penalties on cache misses [20, 21, 22, 23, 24]. Traditional hardware-oriented 

sequential [4], stride [5, 6], distance [7, 8, 9], and stream [1, 10] based prefetchers work well for 

applications with regular cache miss patterns. These prefetchers dynamically capture the 
regularity of a sequence of missing block addresses to speculatively prefetch the subsequent 

blocks. Among them, the stream prefetcher [11, 12] has been adapted in commercial processors 

due to its simplicity and effectiveness. Stream prefetchers prefetch consecutive blocks according 
to the streaming access direction when consecutive misses within a small memory region follow 

the same direction. The prefetching stream continues as long as subsequent memory requests fall 

in the monitored region of the active streams.  

However, in many modern applications and runtime environments, dynamic memory 

allocations and Linked Data Structures (LDS) are very common. It is difficult to accurately 
prefetch the LDS due to their irregular address patterns. Miss-correlation prefetchers [13, 14] 

record patterns of miss addresses and use the past miss correlations to predict future cache misses. 

To be effective, these approaches require a huge history table to record the past miss correlations. 
The Global History Buffer  [8, 9] proposes a general FIFO structure for recording and identifying 

nearby missing address patterns. It can be used to implement both stride/distance based 

prefetchers as well as the correlation-based prefetchers. To reduce the space overhead, Tag-

Correlating prefetcher  extends the miss correlation to much bigger blocks [25]. Coterminous 
Group prefetcher [26]  records and prefetches only the nearby missing blocks with equal reuse 

distance. 
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8. Conclusion  

In this paper, we report enhancement techniques to improve the stream prefetcher. Based on the 

simulation model and workloads provided by the prefetch competition committee [19], our 
evaluation results show that the enhanced stream prefetcher improves 38%, 42%, and 55% of CPI 

for the three cache configurations listed in Table 1 with respect to the base design without 

prefetching. In comparison with the original stream prefetcher, the improvements are 2%, 18%, 

and 19% respectively. We also show that the space overhead of implementing an enhanced 
stream prefetcher is very small. 
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