
SNIP: Scaled Neural Indirect Predictor

Daniel A. Jiménez
Department of Computer Science

The University of Texas at San Antonio

Abstract

This paper proposes an indirect branch predictor
based on neural learning. Neural-based conditional
branch predictors have been among the most accu-
rate in the literature, so it makes sense to adapt them
to the indirect branch prediction problem. However,
it is not clear how to use a predictor optimized to pro-
duce a true/false output for a problem requiring the
prediction of a branch target. My technique, Scaled
Neural Indirect Predictor (SNIP) adapts the recently
proposed SNAP predictor to predict several bits of
the target address, then chooses a known target of
the indirect branch with the most matching bits.

1 Introduction

This note describes my indirect branch predictor en-
try into the 3rd JILP Championship Branch Predic-
tion Competition. My entry is based onscaled neu-
ral analog predictionthat was presented in MICRO
2008 [1] and IEEE-Micro 2009 [2]. The Scaled Neu-
ral Indirect Predictor uses the idea of the SNAP pre-
dictor to predict several bits in the target address,
then uses these bits to make a target prediction by
choosing the most closely matching target from a
list of known targets for the indirect branch being
predicted. This indirect branch predictor uses only
branch address and outcome information, eschewing
the other pipeline information available in the CBP3
infrastructure.

Section 2 describes the idea of the algorithm. Sec-
tion 3 gives a list of tricks used to make the algorithm
more accurate. Section 4 computes the size of the
predictor to show that it stays within the limits im-
posed by the contest.

2 The Idea of the Algorithm

The SNAP predictor is a conditional branch predic-
tor. For the SNIP predictor I modify the SNAP pre-
dictor to predict several target bits. I present the al-
gorithm for predicting a single target bit in Algol-like
pseudo-code that captures the idea of the algorithm
without going into too much detail.

2.1 Variables

The following variables are used by the algorithm:

h The global history length. This is a small integer,
42 in my implementation.

W An h + 1-column matrix of integers weights.
Addition and subtraction on elements ofW saturate
at +15 and -16. The first column of this array, i.e.
column 0, arebias weights, i.e., they track the bias
of this bit of the branch target to be 0 or 1 regardless
of branch history. The remaining columns1..h are
correlating weights, i.e. they track the tendency of
this target bit to be correlated to the outcome of the
corresponding branch in the history.

H The global history register. This vector accumu-
lates the outcomes, taken or not taken, of branches
as they are executed. For convenience of notation, in
the algorithm these outcomes are recorded as bipolar
values, i.e., -1 for not taken and 1 for taken. How-
ever, in the implementation the representation is bi-
nary. Branch outcomes are shifted into the first po-
sition of the vector. This array represents thepat-
tern historyof the branches leading to this indirect
branch.

1

A An array of addresses. As branches are executed,
their addresses are shifted into the first position of
this array. In the implementation, the elements of
the array are the lower 11 bits of the branch address.
This array represents thepath historyof the branches
leading to this indirect branch.

C An array of scaling coefficients. These coeffi-
cients are multiplied by the partial sums of weights
in a dot product computation to make the predic-
tion. There is a different coefficients for each his-
tory position, exploiting the fact that different his-
tory positions make a different contribution to the
overall prediction. The coefficients are chosen as
C[i] = f(i) = 1/(A + B × i) for values ofA andB
chosen empirically. This formula reflects the hypoth-
esis that the correlation between conditional branch
history and branch target decreases with history po-
sition.

sum An integer. This integer is the dot product of
a weights vector chosen dynamically and the global
history register.

2.2 Prediction Algorithm

Figure 1 shows the functionpredict that computes
the Boolean prediction function. The function ac-
cepts the address of the branch to be predicted as
its only parameter. The function is invoked repeat-
edly for several target bits, predicting a single bit
per invocation. The dot product computation can
be expressed as summing of currents through Kirch-
hoff’s law. The multiplication by coefficients can be
expressed by appropriately sizing transistors in the
digital-to-analog converters described in the original
SNAP article [1].

2.2.1 Predicting a Target

A subset of the bits of the target address is pre-
dicted by repeated invocations of the prediction algo-
rithm using different hash functions to select weights
columns. A tagless set-associative memory similar
to a branch target buffer (BTB) keeps previously vis-
ited target addresses. A set of this memory is selected
by taking the branch target modulo the number of
sets, and the set is searched for a target with as few
differences as possible in the predicted bits and target

bits. That is, the target with minimal Hamming dis-
tance between the predicted and target bits is chosen
as the prediction. The BTB is filled with new targets
with the least-recently-used target being replaced.

Parameter Value(s)
of BTB sets 98
of BTB ways 26
of bias weights 19,008
of weights vectors 1,664
History length 42
Initial θ 240
Predicted target bits 1,3,4,5,6,7,8,9,10,

11,12,14,16,17,&19
Bits per weight 5
Coefficient factor 1.0000045500
A 0.059
B 0.006
min. init. coefficient 4.3

Table 1: Empirically tuned parameters for the pre-
dictor.

2.2.2 Predictor Update

The predictor update algorithm is not show for space
reasons. However, it is basically the same algorithm
presented in several previous related works [5, 3, 4].
The weights used to predict the branch are updated
according to perceptron learning. If the prediction of
a particular bit was incorrect, or if the sum used to
make the prediction has a magnitude less than a pa-
rameterθ, then each weight is adjusted up if the mis-
predicted target bit of the current branch has the same
value as the outcome of the corresponding branch in
the history, or decremented otherwise.

3 Tricks

In this section, I describe a number of tricks used to
fit the predictor into 65 kilobytes as well as achieve
good accuracy. A number of parameters to the algo-
rithm were chosen empirically. Figure 1 gives their
values. Some of the parameters would be different
in a real implementation. For example, the number

2

function prediction(pc: integer) : { 1, 0 }
begin

sum := C[0] × W [pc mod n, 0] Initialize to bias weight
for i in 1 .. h in parallel For all h weight columns

sum := sum + C[i + j] × W [k, i + 1] × H[i] Add to dot product
end for
if sum>= 0 then Predict based on sum

prediction:= 1
else

prediction:= 0
endif

end

Figure 1:SNIP algorithm to predict one bit of target for branch at PC. This figure is taken from the original SNAP
paper [1] and modified.

of BTB sets and weights vectors would be powers of
two to simplify selection logic. However, with the
constraint of 65KB of state, I choose non-power-of-
two table sizes to fit within the budget.

3.1 Separating Bias Weights

I divided the weights into bias weights correlating
weights. Bias weights and correlating weights have
different properties, e.g. the bias weight is usually
much more correlated with target bit than any par-
ticular history weight, and the same bias weight is
always used for a given static branch. Separating the
weights into these two pools allows the sizes of these
pools to be determined empirically.

3.2 Skipping Bits

Rather than try to predict all 32 bits of the target ad-
dress, the predictor only predicts certain target bits
chosen through empirical tuning. Thus, the predictor
skips the other bits. The full 32 bits of the target are
predicted as the known target most closely matching
in the predicted bits. By skipping less salient bits,
the predictor avoids costly aliasing.

3.3 Training Coefficients Vectors

The vector of coefficients from the original SNAP
was determined statically. My predictor tunes these
values dynamically. When the predictor is trained,

each history position is examined. If the partial pre-
diction given at this history position is correct, then
the corresponding coefficient is increased by a cer-
tain factor (factor in the code); otherwise is is de-
creased by that factor. Coefficients are part of the
state of the predictor, so they are represented as 64-
bit floating point numbers. Now that coefficients
vary, they can no longer be represented through
fixed-width transistors in the digital to analog con-
verters. However, they can still be implemented ef-
ficiently by being represented digitally similarly to
the perceptron weights, then multiplied by the partial
products through digital-to-analog conversion and
multiplication with op-amps.

3.4 Adaptively Training θ

The adaptive training algorithm used for O-
GEHL [6] is used to dynamically determine the value
of the thresholdθ, the minimum magnitude of per-
ceptron outputs below which perceptron learning is
triggered on a correct prediction. Adaptive training
seeks to strike a balance between the number of times
the weights are adjusted due to an incorrect predic-
tion versus a correct but low-confidence prediction.

3.5 Other Minor Optimizations

A minimum coefficient value was tuned empirically;
coefficients are prevented from going below this
value when initialized.

3

Source of bits Quantity of bits Remarks
bias weights 19, 008 × 5 = 95, 040 19,008 5-bit bias weights
other weights 1, 664 × 5 × 42 = 349, 440 1,664 vectors, 5 bits/weight, 42 columns
tagless BTB 98 × 26 × 32 = 81, 536 98 rows, 28 ways, 32 bits/target
pattern history 42 + 129 = 171 enough for all in-flight branches
path history (42 + 129) × 11 = 1881 enough for all in-flight branches
θ 12 oneθ
branch queue (42 + 129) × 9 9-bit indices into history buffers
coefficients vector (42 + 1) × 64 1 bias and 42 correlating 64-bit coefficients
total 532, 371 66,546 bytes = 64.987KB
surplus 532, 480 − 532, 371 = 109 enough for miscellaneous variables

Table 2: Computing the total number of bits used.

I initially tried predicting the first several bits
of the target address. I later experimented with
a number of random combinations of bits to pre-
dict. The result, represented in the code as the mask
0xb5ffa, shows that predicting a non-consecutive
subset of the target bits yields superior performance.

4 The Size of the Predictor

Figure 2 shows how I compute the size of the state
used for the predictor. The total number of bits used
by my predictor is 532,371, which is less than the
65KB = 532,480 bits allowed for the contest.

5 Acknowledgement

This research is supported by NSF grants CRI-
0751138 and CCF-0931874.

References

[1] Renée St. Amant, Daniel A. Jiménez, and Doug
Burger. Low-power, high-performance analog
neural branch prediction. InProceedings of the
41th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO-41). IEEE
Computer Society, November 2008.

[2] Renée St. Amant, Daniel A. Jiménez, and Doug
Burger. Mixed-signal approximate computation:
A neural predictor case study.IEEE Micro – Top
Picks from Computer Architecture Conferences,
29(1):104–115, 2009.

[3] Daniel A. Jiménez. Fast path-based neural
branch prediction. InProceedings of the 36th
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-36), pages 243–252.
IEEE Computer Society, December 2003.

[4] Daniel A. Jiménez. Piecewise linear branch pre-
diction. In Proceedings of the 32nd Annual In-
ternational Symposium on Computer Architec-
ture (ISCA-32), June 2005.

[5] Daniel A. Jiménez and Calvin Lin. Dynamic
branch prediction with perceptrons. InProceed-
ings of the 7th International Symposium on High
Performance Computer Architecture (HPCA-7),
pages 197–206, January 2001.

[6] André Seznec. Analysis of the o-geometric his-
tory length branch predictor. InProceedings
of the 32nd Annual International Symposium on
Computer Architecture (ISCA’05), pages 394–
405, June 2005.

4

