
Bias-Free Neural Predictor

Dibakar Gope and Mikko H. Lipasti
Department of Electrical and Computer Engineering

University of Wisconsin - Madison
gope@wisc.edu, mikko@engr.wisc.edu

Abstract
Prior research in neurally-inspired perceptron predictors

has shown significant improvements in branch prediction ac-
curacy by exploiting correlations in long branch histories.
However, systems with moderate hardware budgets typically
restrict such perceptron predictors from correlating beyond 64
to 128 past branches and limit their capability to learn distant
branch correlations, such as on the order of 1024 to 2048
branches deep. In this work, we propose Bias-Free Neural
predictor that is structured to learn correlations only with
non-biased conditional branches, aka. branches whose dy-
namic behavior varies during a program’s execution. This,
combined with a recency-stack-like management policy for the
global history register, opens up the opportunity for a modest
history length to include much older and much richer context
to predict future branches more accurately. Bias-Free Neu-
ral predictor achieves 2.73 MPKI (mispredictions per 1000
instructions) for a 32KB storage budget and 2.1 MPKI for an
unlimited budget.

1. Introduction
Prior research in neural-based perceptron predictors has been
very successful in considerably increasing the branch predic-
tion accuracy [3, 1] by correlating a branch’s outcome with
previously executed branches. However, a moderate hardware
budget of 32-64KB restricts such state-of-the-art perceptron
predictors to rely on the correlations found with only 64 to 128
recent branches in the dynamic execution stream to predict a
branch. For a branch under prediction, some of the correlated
branches may have appeared at a large distance, such as on
the order of 512 to 1024 branches apart, in the dynamic exe-
cution stream. This can happen, for instance, if two dynamic
instances of a branch observe the same recent histories but
behave oppositely, then a longer history can potentially es-
tablish a correlation from these hard-to-predict branches with
distinguishable distant branches. Prediction accuracy of the
recently proposed ISL-TAGE predictor [4] further confirms
that looking at much longer histories (of the order of 2000
branches) can provide useful information for prediction. How-
ever, scaling a state-of-the-art perceptron-based predictor [1]
from 64KB to 1MB to track distant branch correlations results
in long computational latency and high energy consumption in
the large storage structures, which may prohibit the incorpora-
tion of such a branch predictor into a commercial processor.
Furthermore, it causes a substantial increase in training time.

In addition, all of the additional branches included may not
be correlated and they preclude the inclusion of any highly
correlated branches from deeper in the global history.

In this work, we propose Bias-Free Neural (BFN) predic-
tor that utilizes the behavior of past non-biased conditional
branches to predict a branch. Non-biased branches resolve in
both directions whereas conditional branches that display only
one behavior during the execution of a program are considered
as “completely biased” 1 branches.

Our work builds on the observation that in order for a branch
to establish an effective correlation with another branch, the
change in the direction of one branch has to influence the
direction of another. Since a biased branch is skewed towards
one direction, the change in the direction of a non-biased
branch can not establish any true correlation with that branch.
As a result the prediction of a non-biased branch can not rely
on the direction of a biased branch observed in the past history.
A biased branch can sometimes merely reinforce a prediction
decision already established by the correlation captured with
another non-biased branch in the past global history.

Restricting the predictor to learn correlations only with non-
biased branches enables a modest history length to reach very
deep into the program’s execution history to find correlated
branches and provide highly-accurate branch predictions with
a modest storage budget.

2. Key Idea

In this section we provide an overview of the two types of
filtering used to collect older and richer context from the long
global history and present an idealized version of the BFN pre-
dictor without paying attention to detecting biased branches at
runtime. Biased branches are predicted with their behavior and
excluded from the perceptron prediction and thus prevented
from training and possibly aliasing with other weights.

2.1. Filtering biased branches from the history

Since biased branches provide virtually no useful context to
the branch predictor’s history, the BFN predictor only tracks a
branch in the global history register if that branch is detected
as non-biased at runtime.

1hereafter “completely biased” branches will be referred simply as biased
branches

2.2. Filtering multiple instances from the history

The BFN predictor attempts to find branch correlations deeper
into the global history within a limited hardware budget by
filtering biased branches from the history. In order to capture
even more distant branch correlations (of the order of 2000
branches deep) and improve the prediction accuracy further,
BFN predictor only tracks the latest occurrence of a non-
biased branch in the global history register and attempts to
learn correlations with that occurrence. This optimization
minimizes the footprint of a single non-biased branch in the
path history of a branch and thus in turn assists in including any
highly correlated branches from deeper in the global history
within a modest length global history register.

The BFN predictor introduces a recency-stack-like (RS)
structure to track the most recent occurrence of a branch in
the history. When a non-biased branch PCnb is committed,
the RS structure is scanned to find the last occurrence of that
branch. If the branch PCnb hits in the RS, then it is moved to
the top of the RS and updated with its recent outcome. The
set of locations from the first position in the RS to the hitting
entry are shifted by one position. In case of no entry is found
with PCnb, the RS acts like a conventional shift register.

Furthermore, in order to capture different correlations for
different instances of a branch with the recent occurrence of a
non-biased branch present in the RS, the non-biased branch
includes it’s positional history, pos_hist along with it’s recent
outcome in the RS and uses that during prediction and training.
It’s pos_hist conveys the absolute distance of the non-biased
branch from the current branch in the past global history.

The following variables are used by the BFN prediction
algorithm:

a) Wb, Wm: one-dimensional and two-dimensional arrays
of integer weights respectively. Wb is the bias weight table,
whereas Wm is the correlating weight table.

c) GHR: The global history register containing only the
recent occurrence of non-biased branches as they are executed.

b) h: The size of the RS-like global history register.
d) A: An array of addresses of the non-biased branches in

the past global history.
e) P: The absolute distance in the past global history of cor-

responding non-biased branches included in array A. In other
words, P captures the pos_hist of the non-biased branches
present in the RS.

f) accum: The dot-product of the weights vector chosen and
the global history register.

In effect, the GHR in conjunction with the array A and the
array P behaves as a RS.

Algorithm 1 shows the function predict that computes the
Boolean prediction function. For each non-biased branch
captured in the array A, the idealized version of BFN predic-
tor hashes the branch address, the address of the non-biased
branch and it’s distance in the history recorded in P to select a
row and uses it’s depth in A to map to a column in Wm. That

Algorithm 1 BFN Prediction {Idealized version}

function prediction (pc: integer) : { taken, not_taken }
if pc is “completely biased” branch then

prediction← bias_direction
else

accum←W b[pc mod n]
for i← 1 .. h do in parallel

row_index← hash(pc xor A[i] xor P[i]) mod n
accum← accum + W m[row_index, i] ∗ GHR[i]

end for
prediction← (accum≥ 0)? taken : not_taken

end if

is, for every non-biased branch of every path, the predictor
tracks the correlation of that branch in conjunction with it’s
recorded distance in the history. The correlations computed in
this way for each component of the current path are aggregated
to make a prediction.

Training: As branches are committed, the weights used to
predict a non-biased branch are updated according to conven-
tional perceptron learning [3]. The weights are not updated if
a biased branch commits. When a non-biased branch commits,
the RS-like management policy updates the GHR, A and P.

2.3. Folded Global History

In order to compute the indexes for accessing the correlating
weights, prior studies on perceptron-based prediction [1, 2]
consider hashing the branch addresses in path history with the
current branch to be predicted. However, sometimes in spite
of being captured in the same relative depth in A and in the
same absolute distance in the past global history, a non-biased
branch can influence the prediction decision of the current
branch differently if the execution paths from the non-biased
branch to the current branch differ.

In order to limit this phenomenon, for each non-biased
branch captured in A, the hash function outlined in Algo-
rithm 1 to index the perceptron counters is augmented with
global history bits from the non-biased branch leading up to
the current branch. When the number of global history bits ex-
ceeds the number of bits used in the predictor index function,
the global history is “folded” by a bit-wise XOR of groups of
consecutive history bits and is hashed down to the required
number of bits for the predictor index.

3. Implementation
In this section we present a simple hardware structure to detect
the non-biased branches on the fly and describe the required
structural modifications to the perceptron weight table to min-
imize the perturbations caused by the dynamic detection of
non-biased branches as execution advances.

3.1. Biased Branch Detection

The biased branch detection logic is controlled by a simple
finite state machine (FSM) that operates in one of four possible

Algorithm 2 BFN Prediction {Practical Implementation}

function prediction (pc: integer) : { taken, not_taken }
if BST [pc mod m] == Not f ound then /* m is the number of entries in BST */

prediction← taken/not_taken
else if BST [pc mod m] == Taken/Not taken then

prediction← BST [pc mod m]
else

accum←W b[pc mod n] /* n is the number of entries in bias weight table W b */
for i← 1 .. ht do in parallel

row_index← hash(pc xor A[i] xor f olded_hist[i]) mod n
accum← accum + W m[row_index, i] ∗ GHRunfiltered[i] /* n is the number of rows in 2-dim weight table W m */

end for
for i← 1 .. h−ht do in parallel

table_index← hash(pc xor RS[i].A xor RS[i].P xor f olded_hist[RS[i].P]) mod p
accum← accum + W rs[table_index] ∗ RS[i].H /* p is the number of entries in 1-dim weight table W rs */

end for /* RS is the Recency Stack. Each entry have A, P and H
prediction← (accum≥ 0)? taken : not_taken fields that contain the address, absolute distance and

end if outcome of the latest occurrence of a branch */

Algorithm 3 Training {Practical Implementation}

function training (pc: integer, branch_direction: boolean)
if BST [pc mod m] == Not f ound then

BST [pc mod m]← branch_direction
else if prediction 6= branch_direction and
BST [pc mod m] == Taken/Not taken then

BST [pc mod m]← Non_biased
Update weights in W b, W m, W rs

else if BST [pc mod m] == Non_biased and (|accum| <
θ or prediction 6= branch_direction) then

Update weights in W b, W m, W rs
end if
if BST [pc mod m] == Non_biased then

Update RS
end if
Update GHRunfiltered

states: Not found, Taken, Not taken or Non-biased.
Until a conditional branch is encountered for the first time,

the FSM relating to it’s status stays in the Not found state. The
status of a branch is identified by consulting a structure called
the Branch Status Table (BST). The BST is a direct-mapped
structure that records information relating to the past behavior
of branches. When a prediction is to be made for a condi-
tional branch detected in the Not found state, the aggregated
correlation from the perceptrons is not considered. When this
conditional branch is subsequently committed for the first time,
the detection FSM transitions from the Not found state to one
of two possible states: Taken or Not taken depending on the
outcome of the branch. The Taken and Not taken state exists to
record the biased direction of a previously unknown branch in
the BST and used to predict the future instances of the branch.
In the event a branch in either Taken or Not taken state executes
in the opposite direction that differs from the recorded state,
the detection FSM transitions to the Non-biased state. Any

future instances of this branch are predicted using perceptron
computation and contribute to the GHR, A and P arrays and
thus assist other non-biased branches to establish correlations
with that branch.

Note that the state-of-the-art perceptron-based predictors
[1, 2] as well as the idealized version of BFN predictor outlined
in Algorithm 1 use the depth of a captured branch in the RS
to map to a column in the two-dimensional weight table Wm.
In our implementation, all branches begin being predicted
considering as biased until they transition to the Non-biased
state in the BST. Furthermore, until a branch is detected as
Non-biased, it does not contribute to the history for future
branches. In the event a branch is detected as Non-biased
using the FSM transitions as described above, it starts placing
it’s path history into the RS, which results in shifting the
relative depths of previously detected non-biased branches in
the RS. This necessitates those previously detected non-biased
branches to re-learn correlations in the new relative depths in
the RS in spite of possibly being in the same absolute distances
in the past global history, resulting in hurting the accuracy.

Our implementation solves this issue by making use of
a one-dimensional correlating weight table; this eliminates
perturbations induced by the occurrences of a newly detected
non-biased branch in the history.

3.2. One-Dimensional Weight Table

Our implementation stores the correlations in a one-
dimensional array of integer weights instead of maintaining
those in a two-dimensional weight table as outlined in Al-
gorithm 1. Now for each non-biased branch captured in the
RS, the one-dimensional weight table is indexed using a hash
function of the current branch to be predicted, the address of
the non-biased branch, it’s absolute depth in the history and
the folded global history leading up to the current branch as
discussed in Section 2.3. Since the previously detected non-

0

2

4

6

8

10

12

SP
EC

0
0

SP
EC

0
1

SP
EC

0
2

SP
EC

0
3

SP
EC

0
4

SP
EC

0
5

SP
EC

0
6

SP
EC

0
7

SP
EC

0
8

SP
EC

0
9

SP
EC

1
0

SP
EC

1
1

SP
EC

1
2

SP
EC

1
3

SP
EC

1
4

SP
EC

1
5

SP
EC

1
6

SP
EC

1
7

SP
EC

18

SP
EC

1
9

FP
1

FP
2

FP
3

FP
4

FP
5

IN
T1

IN
T2

IN
T3

IN
T4

IN
T5

M
M

1

M
M

2

M
M

3

M
M

4

M
M

5

SE
R

V
1

SE
R

V
2

SE
R

V
3

SE
R

V
4

SE
R

V
5

A
vg

.

M
is

p
re

d
ic

ti
o

n
s

p
e

r
1

0
0

0
 In

st
s.

BFN (fhist)

BFN(ghist bias-free + fhist)

BFN (ghist bias-free + RS + fhist)

Figure 1: Contributions of Optimizations for the BFN Predictor.

biased branches do not depend anymore on the relative depths
in the RS to index to columns in the correlating weight table,
they do not require re-learning their correlations.

The BFN predictor is very effective in capturing very distant
branch correlations. However it does not perform that well
on some branches that have a very strong bias towards one
direction, but do not find good correlations at remote histories.
For these branches, until the set of non-biased branches present
in the recent history develop strong correlations, the BFN
approach cannot outweigh the bias weight to produce the
unlikely predictions. As a result, during the training phase
BFN predictor performs poorly than a conventional perceptron
predictor for those branches and causes sizable number of
mispredictions.

In order to address this perceptron predictor artifact and
avoid the mispredictions caused by this class of branches, we
incorporate a conventional perceptron predictor component
that captures correlations for few recent unfiltered history bits.
The presence of few recent unfiltered history bits essentially
assists other non-biased branches in the global history register
to outweigh the bias weight and avoid some mispredictions
during the training phase. Furthermore, BFN predictor some-
times fails to predict loops with constant number of iterations.
The loop count (LC) predictor is used to predict these loops.

Algorithm 2 presents the BFN Prediction function and Al-
gorithm 3 outlines the Training used to update the BST and the
weight tables. W b is the array of bias weights, W m is the two-
dimensional conventional perceptron weight table, whereas
W rs is the one-dimensional weight table. ht is the number of
recent branches tracked using the conventional perceptron pre-
dictor component. GHRunfiltered is the global history register
containing the outcomes of all branches. Table 1 shows the
computation of the size of the state used for the predictor.

4. Results and Conclusion

Figure 1 demonstrates the contributions of individual opti-
mizations to accuracy. All three bars use folded global his-
tory (fhist) to index the perceptron counters. The leftmost
bar shows the accuracy achieved with identifying the bi-

Table 1: Total predictor storage budget

Source Quantity of bits
BST 8192 entries × 2-bits/entry = 16,384
Wb 1024 weights× 6-bits/weight = 6,144
Wm 1024 × 11 × 6-bits/weight = 67,584
Wrs 32768 weights × 5-bits/weight = 1,63,840
RS 36 depth × (15 + 11 + 1) = 972; 15-bit tag

RS[].A, 11-bit RS.[]P, 1 bit T/NT RS[].H
Filtered Hist. 128 entries × 26-bits/entry = 3,328
LC Predictor 2,368

Total 260,620 bits = 31.81KB

ased branches using BST and preventing them from using
the weight tables. However, this does not restrict the biased
branches from updating the global history register. This op-
timization improves the average MPKI from 3.02 to 2.89.
The next bar reflects the improvement when BFN predictor
does not include biased branches in the global history reg-
ister i.e. learn correlations only with non-biased branches.
The rightmost bar demonstrates the improvement with the RS-
like management policy for the global history register. This
optimization improves the MPKI from 2.89 to 2.73.

In this work, we propose BFN predictor that learns corre-
lations only with non-biased branches and enables a modest
storage budget of 32KB and history length of 47 bits to reach
very deep into the program’s execution history.

Acknowledgments
This work was supported in part by NSF grants CCF-1116450
and CCF-1318298.

References
[1] D. A. Jimenez, “Piecewise Linear Branch Prediction,” in International

Symposium on Computer Architecture, June 2005.
[2] D. A. Jimenez, “An optimized scaled neural branch predictor,” in Inter-

national Conference on Computer Design, October 2011.
[3] D. A. Jimenez and C. Lin, “Dynamic Branch Prediction with Percep-

trons,” in International Symposium on High Performance Computer
Architecture, February 2001.

[4] A. Seznec, “A 64 kbytes ISL-TAGE branch predictor,” in 3rd Champi-
onship Branch Prediction, June 2011.

