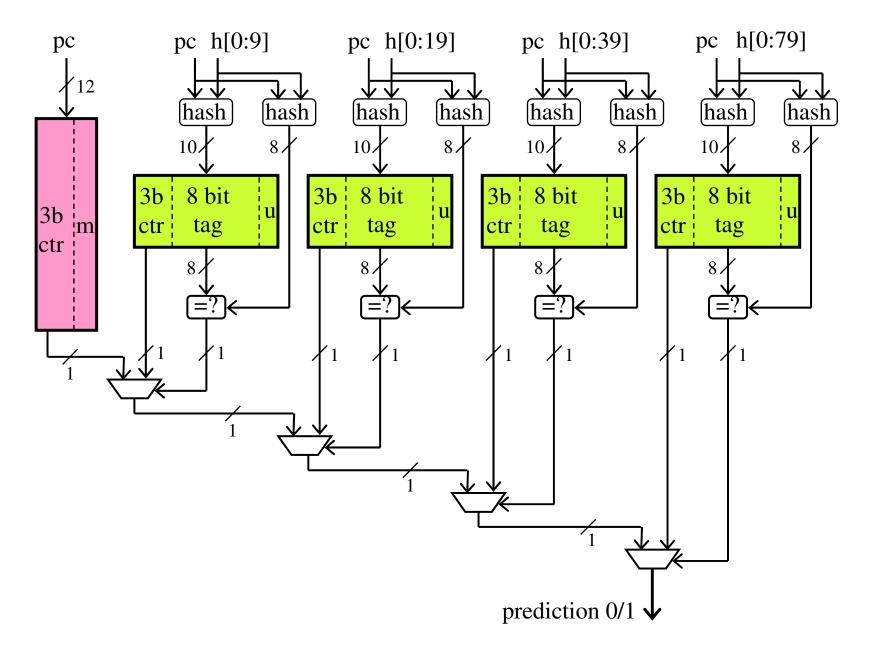


A PPM-like, tag-based predictor

Pierre Michaud



Main characteristics

- global history based
- 5 tables
 - one 4k-entry bimodal (indexed with PC)
 - four 1k-entry "global" (history length 10,20,40,80)
- "Global" tables are tagged (8-bit tags)
- Prediction given by the 3-bit up-down saturating counter associated with the longest matching history

References

- Perceptron predictor
 - Jiménez, Lin, HPCA 2001
 - \rightarrow benefit from a very long global history
- PPM (prediction by partial matching)
 - text compression: Cleary, Witten, IEEE Trans. on Communications, 1984
 - branch prediction "limit": Chen, Coffey, Mudge, ASPLOS 1996
 - → spectrum of history lengths, prediction from longest matching history
 - \rightarrow permits using a very long global history with limited table space
- YAGS: bimodal table + 1 global table
 - Eden, Mudge, MICRO 1998
 - \rightarrow (short) tags do not waste table space
 - \rightarrow allocate entry in global table only if bimodal prediction is wrong

Predictor update

- X = longest matching history at prediction time
- Update 3-bit counter associated with X, and only that counter
 - Increment if taken, decrement otherwise
- If prediction was correct, we are done
- If prediction was wrong, try to steal entries for history lengths > X
 - Write the branch tag
 - Reinitialize 3-bit counter to a new value

New update method

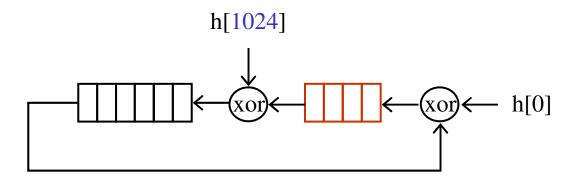
- Bit *u* in each global table entry \rightarrow selective entry stealing
 - (*u* is for *useful entry*)
 - if we steal all entries > X, up to 4 entries stolen on each mispredict $\rightarrow \bigotimes$
 - try to distinguish entries that we should avoid stealing
 - heuristic:
 - useful when prediction correct and bimodal wrong
 - not useful when prediction wrong and bimodal correct
- Bit *m* in each bimodal table entry \rightarrow 3-bit counter initialization
 - (*m* is for *meta-predictor*)
 - many entries deliver few predictions before being stolen
 - \rightarrow 3-bit counter initialization is important
 - if there is some correlation, better to initialize according to branch outcome
 - otherwise, better to initialize with bimodal prediction = most likely outcome

Precisely:

- If prediction was wrong and X < 80
 - Choose entries to steal
 - Read bit u for all entries > X
 - If at least one bit *u* is reset, steal only entries which bit *u* is reset
 - If all bits u are set, choose a random Y > X and steal only entry Y
 - Read bit *m* from bimodal
 - Steal entries
 - Write tag
 - Reset bit *u*
 - If *m* is set, initialize 3-bit counter according to branch outcome
 - Otherwise, initialize 3-bit counter according to bimodal prediction
- If prediction from X different from bimodal prediction
 - if X is correct, set both bit *m* in bimodal and bit *u* in entry X
 - Otherwise, reset both *m* and *u*

Why 3-bit counters ?

- Example: stream of random branch outcomes with 70% taken and 30% not-taken
 - predict *always taken* \rightarrow mispredict rate = 30%
 - 2-bit counter \rightarrow mispredict rate = 36 %
 - → 20% higher
- In the proposed predictor, on the distributed traces, 3-bit counters are better than 2-bit counters.
 - Average: -3.3% mispredicts
 - Hard-to-predict traces: up to -6%


Hashing functions

Based on global history folding

Example: fold a 1024-bit history onto 10 bits

 \rightarrow use a cyclic shift register and a couple of XORs

1024 % 10 = four

More explanations...

- *Analysis of a tag-based branch predictor*, P. Michaud, IRISA research report PI-1660, Nov. 2004.
 - start from an ideal predictor, and introduce successive degradations corresponding to hardware constraints

- There is room for improvement
 - the problem bits *u* and *m* try to solve is not completely solved
 - in the ideal predictor, global table space is shared by all history lengths