
A PPM-like, tag-based predictor

Pierre Michaud

2

Main characteristics

• global history based

• 5 tables
– one 4k-entry bimodal (indexed with PC)
– four 1k-entry “global” (history length 10,20,40,80)

• “Global” tables are tagged (8-bit tags)

• Prediction given by the 3-bit up-down saturating counter associated
with the longest matching history

3

3b
ctr

m
3b
ctr

u
8 bit
tag

hash hash

=?

3b
ctr

u
8 bit
tag

hash hash

=?

3b
ctr

u
8 bit
tag

hash hash

=?

3b
ctr

u
8 bit
tag

hash hash

=?

prediction 0/1

pc pc h[0:9] pc h[0:19] pc h[0:39] pc h[0:79]

12

10 10 10 108 8 8 8

8 8 8 8

1
1 1 1 1 1 1 1 1

1

1

1

4

References
• Perceptron predictor

– Jiménez, Lin, HPCA 2001
– � benefit from a very long global history

• PPM (prediction by partial matching)
– text compression: Cleary,Witten, IEEE Trans. on Communications, 1984
– branch prediction “limit”: Chen, Coffey, Mudge, ASPLOS 1996
– � spectrum of history lengths, prediction from longest matching history
– � permits using a very long global history with limited table space

• YAGS: bimodal table + 1 global table
– Eden, Mudge, MICRO 1998
– � (short) tags do not waste table space
– � allocate entry in global table only if bimodal prediction is wrong

5

Predictor update

• X = longest matching history at prediction time

• Update 3-bit counter associated with X, and only that counter
– Increment if taken, decrement otherwise

• If prediction was correct, we are done

• If prediction was wrong, try to steal entries for history lengths > X
– Write the branch tag
– Reinitialize 3-bit counter to a new value

6

New update method
• Bit u in each global table entry � selective entry stealing

– (u is for useful entry)
– if we steal all entries > X, up to 4 entries stolen on each mispredict � �

– try to distinguish entries that we should avoid stealing
– heuristic:

• useful when prediction correct and bimodal wrong
• not useful when prediction wrong and bimodal correct

• Bit m in each bimodal table entry � 3-bit counter initialization
– (m is for meta-predictor)
– many entries deliver few predictions before being stolen
– � 3-bit counter initialization is important
– if there is some correlation, better to initialize according to branch outcome
– otherwise, better to initialize with bimodal prediction = most likely outcome

7

Precisely:
• If prediction was wrong and X < 80

– Choose entries to steal
• Read bit u for all entries > X
• If at least one bit u is reset, steal only entries which bit u is reset
• If all bits u are set, choose a random Y > X and steal only entry Y

– Read bit m from bimodal
– Steal entries

• Write tag
• Reset bit u
• If m is set, initialize 3-bit counter according to branch outcome
• Otherwise, initialize 3-bit counter according to bimodal prediction

• If prediction from X different from bimodal prediction
– if X is correct, set both bit m in bimodal and bit u in entry X
– Otherwise, reset both m and u

8

Why 3-bit counters ?

• Example: stream of random branch outcomes with 70% taken and 30% not-taken
– predict always taken � mispredict rate = 30%
– 2-bit counter � mispredict rate = 36 %
– � 20% higher

• In the proposed predictor, on the distributed traces, 3-bit counters are better than
2-bit counters.
– Average: -3.3% mispredicts
– Hard-to-predict traces: up to -6%

9

Hashing functions

Based on global history folding

Example: fold a 1024-bit history onto 10 bits

� use a cyclic shift register and a couple of XORs

1024 % 10 = four

xor xor h[0]

h[1024]

10

More explanations…

• Analysis of a tag-based branch predictor, P. Michaud, IRISA research report PI-
1660, Nov. 2004.
– start from an ideal predictor, and introduce successive degradations corresponding to

hardware constraints

• There is room for improvement
– the problem bits u and m try to solve is not completely solved
– in the ideal predictor, global table space is shared by all history lengths

