Perceptrons for Dummies

Daniel A. Jiménez

Department of Computer Science Rutgers University

Conditional Branch Prediction is a Machine Learning Problem

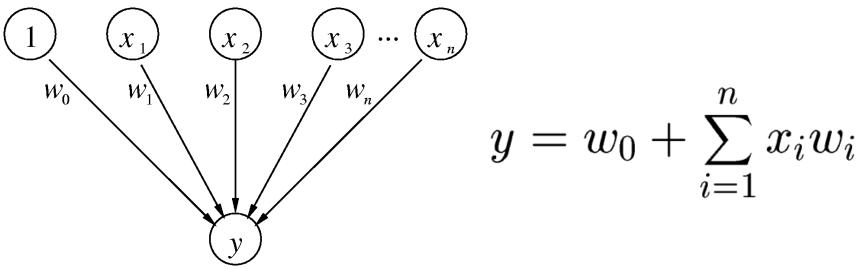
- The machine learns to predict conditional branches
- So why not apply a machine learning algorithm?
- Artificial neural networks
 - Simple model of neural networks in brain cells
 - Learn to recognize and classify patterns
- We used fast and accurate perceptrons [Rosenblatt `62, Block `62]
 for dynamic branch prediction [Jiménez & Lin, HPCA 2001]

Input and Output of the Perceptron

- The inputs to the perceptron are branch outcome histories
 - Just like in 2-level adaptive branch prediction
 - Can be global or local (per-branch) or both (alloyed)
 - Conceptually, branch outcomes are represented as
 - ◆ +1, for taken
 - -1, for not taken
- The output of the perceptron is
 - Non-negative, if the branch is predicted taken
 - Negative, if the branch is predicted not taken
- Ideally, each static branch is allocated its own perceptron

Branch-Predicting Perceptron

- Inputs (*x*'s) are from branch history and are -1 or +1
- n + 1 small integer weights (w's) learned by on-line training
- Output (y) is dot product of x's and w's; predict taken if $y \ge 0$
- Training finds correlations between history and outcome



Training Algorithm

 $x_{1..n}$ is the *n*-bit history register, x_0 is 1. $w_{0..n}$ is the weights vector. *t* is the Boolean branch outcome. θ is the training threshold.

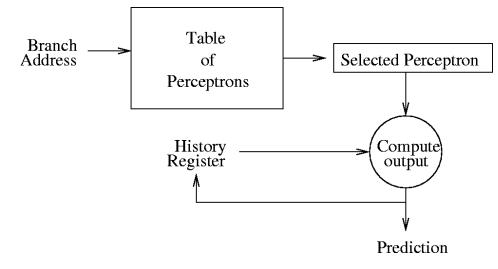
```
\begin{array}{l} \text{if } |y| \leq \theta \text{ or } ((y \geq 0) \neq t) \text{ then} \\ \text{for each } 0 \leq i \leq n \text{ in parallel} \\ \text{if } t = x_i \text{ then} \\ w_i := w_i + 1 \\ \text{else} \\ w_i := w_i - 1 \\ \text{end if} \\ \text{end for} \\ \text{end if} \end{array}
```

What Do The Weights Mean?

- The bias weight, w_0 :
 - Proportional to the probability that the branch is taken
 - Doesn't take into account other branches; just like a Smith predictor
- The correlating weights, w_1 through w_n :
 - *w_i* is proportional to the probability that the predicted branch agrees with the *i*th branch in the history
- The dot product of the *w*'s and *x*'s
 - $w_i \times x_i$ is proportional to the probability that the predicted branch is taken based on the correlation between this branch and the *i*th branch
 - Sum takes into account all estimated probabilities
- What's θ ?
 - Keeps from overtraining; adapt quickly to changing behavior

Organization of the Perceptron Predictor

- Keeps a table of *m* perceptron weights vectors
- Table is indexed by branch address modulo *m*



[Jiménez & Lin, HPCA 2001]

Mathematical Intuition

A perceptron defines a hyperplane in *n*+1-dimensional space: $y = w_n x_n + w_{n-1} x_{n-1} + \dots + w_1 x_1 + w_0$

For instance, in 2D space we have: $y = w_1 x_1 + w_0$

This is the equation of a line, the same as y = mx + b

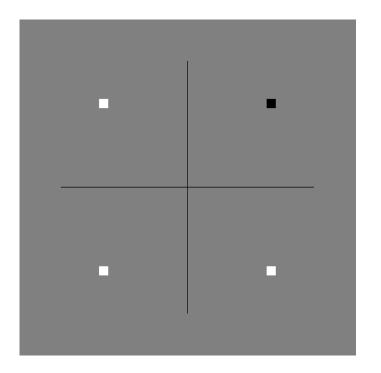
Mathematical Intuition continued

In 3D space, we have $y = w_1x_1 + w_2x_2 + w_0$ Or you can think of it as $z = m_1x + m_2y + b$ i.e. the equation of a plane in 3D space

This hyperplane forms a *decision surface* separating predicted taken from predicted not taken histories. This surface intersects the feature space. Is it a linear surface, e.g. a line in 2D, a plane in 3D, a cube in 4D, etc.

Example: AND

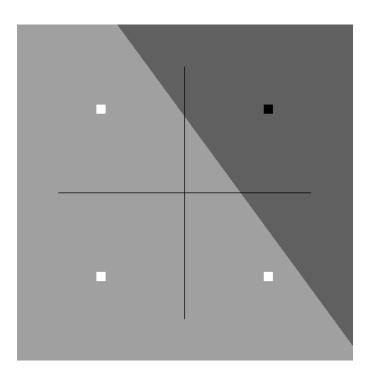
- Here is a representation of the AND function
- White means *false*, black means *true* for the output
- ◆ -1 means *false*, +1 means *true* for the input



- -1 AND -1 = false
- -1 AND +1 = false
- +1 AND -1 = false
- +1 AND +1 = true

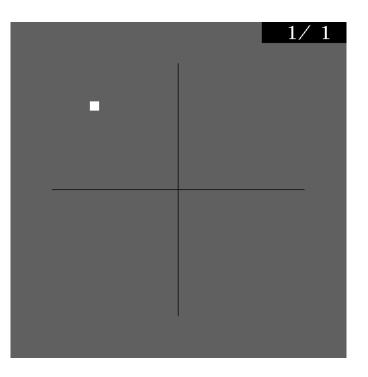
Example: AND continued

 A linear decision surface (i.e. a plane in 3D space) intersecting the feature space (i.e. the 2D plane where z=0) separates *false* from *true* instances



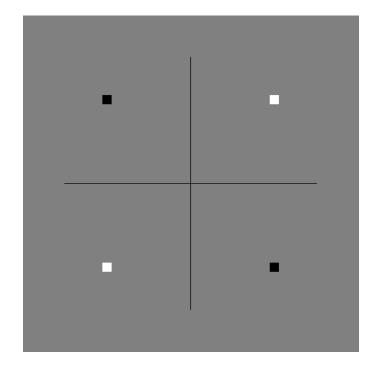
Example: AND continued

• Watch a perceptron learn the AND function:



Example: XOR

• Here's the XOR function:

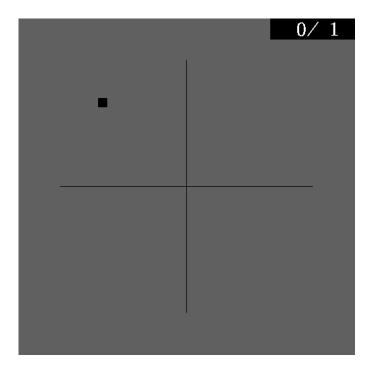


-1 XOR -1 = false -1 XOR +1 = true +1 XOR -1 = true +1 XOR +1 = false

Perceptrons cannot learn such *linearly inseparable* functions

Example: XOR continued

• Watch a perceptron try to learn XOR



Concluding Remarks

- Perceptron is an alternative to traditional branch predictors
- The literature speaks for itself in terms of better accuracy
- Perceptrons were nice but they had some problems:
 - ◆ Latency
 - Linear inseparability

The End

Idealized Piecewise Linear Branch Prediction

Daniel A. Jiménez

Department of Computer Science Rutgers University

Previous Neural Predictors

- The perceptron predictor uses only pattern history information
 - The same weights vector is used for every prediction of a static branch
 - The i^{th} history bit could come from any number of static branches
 - So the *i*th correlating weight is aliased among many branches
- The newer path-based neural predictor uses path information
 - The i^{th} correlating weight is selected using the i^{th} branch address
 - This allows the predictor to be pipelined, mitigating latency
 - This strategy improves accuracy because of path information
 - But there is now even more aliasing since the *i*th weight could be used to predict many different branches

Piecewise Linear Branch Prediction

- Generalization of perceptron and path-based neural predictors
- Ideally, there is a weight giving the correlation between each
 - Static branch *b*, and
 - Each pair of branch and history position (i.e. *i*) in *b*'s history
- *b* might have 1000s of correlating weights or just a few
 - Depends on the number of static branches in *b*'s history
- First, I'll show a "practical version"

The Algorithm: Parameters and Variables

- ◆ *GHL* the global history length
- ◆ *GHR* a global history shift register
- GA a global array of previous branch addresses
- $W an n \times m \times (GHL + 1)$ array of small integers

The Algorithm: Making a Prediction

Weights are selected based on the current branch and the i^{th} most recent branch

```
function predict (address: integer): boolean

begin

output := W[address, 0, 0]

for i in 1..GHL do

if GHR[i] = true then

output := output + W[address \mod n, GA[i] \mod m, i]

else

output := output - W[address \mod n, GA[i] \mod m, i]

end if

end for

predict := output \ge 0

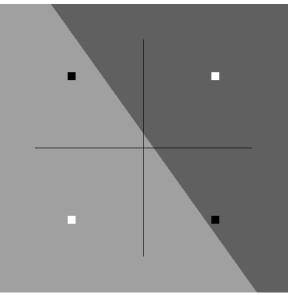
end
```

The Algorithm: Training

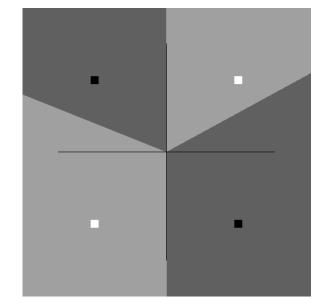
```
procedure train (address: integer; taken: boolean)
begin
    if |output| < \theta or output \ge 0 \neq taken then
         if taken = true then
              W[address \mod n, 0, 0] = W[address \mod n, 0, 0] + 1
         else
              W[address \mod n, 0, 0] = W[address \mod n, 0, 0] - 1
         end if
         for i in 1..GHL
              if GHR[i] = taken then
                   W[address \mod n, GA[i] \mod m, i] = W[address \mod n, GA[i] \mod m, i] + 1
              else
                   W[address \mod n, GA[i] \mod m, i] = W[address \mod n, GA[i] \mod m, i] - 1
              end if
         end for
    end if
    GA[2..GHL] := GA[1..GHL - 1]
    GA[1] := address
     GHR[2..GHL] := GHR[1..GHL - 1]
     GHR[1] := taken
end
```

Why It's Better

- Forms a piecewise linear decision surface
 - Each piece determined by the path to the predicted branch
- Can solve more problems than perceptron



Perceptron decision surface for XOR doesn't classify all inputs correctly



Piecewise linear decision surface for XOR classifies all inputs correctly

Learning XOR

• From a program that computes XOR using if statements

0/1

perceptron prediction

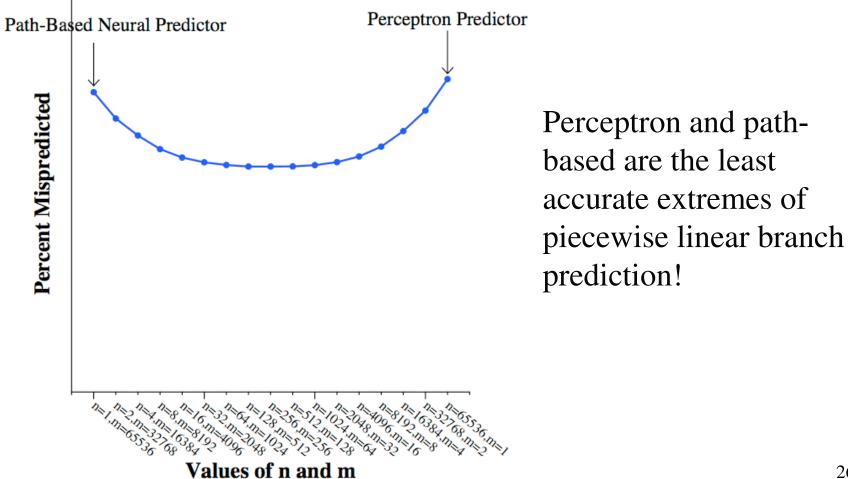
	1,	/ 1
-		
		-

piecewise linear prediction

A Generalization of Neural Predictors

- When m = 1, the algorithm is exactly the perceptron predictor
 - W[n,1,h+1] holds *n* weights vectors
- When n = 1, the algorithm is path-based neural predictor
 - W[1,m,h+1] holds *m* weights vectors
 - Can be pipelined to reduce latency
- The design space in between contains more accurate predictors
- If *n* is small, predictor can still be pipelined to reduce latency

Generalization Continued



Idealized Piecewise Linear Branch Prediction

- Get rid of n and m
- Allow 1^{st} and 2^{nd} dimensions of *W* to be unlimited
- Now branches cannot alias one another; accuracy much better
- One small problem: unlimited amount of storage required
- How to squeeze this into 65,792 bits for the contest?

Hashing

- 3 indices of W: i, j, & k, index arbitrary numbers of weights
- ◆ Hash them into 0..*N*-1 weights in an array of size *N*
- Collisions will cause aliasing, but more uniformly distributed
- Hash function uses three primes $H_1 H_2$ and $H_{3:}$

function hash
$$(i,j,k : integer)$$
: integer
begin
 $hi := i \times H_1$
 $hj := j \times H_2$
 $hk := k \times H_3$
hash := (hi xor hj xor hk) mod N
end

More Tricks

- Weights are 7 bits, elements of *GA* are 8 bits
- Separate arrays for bias weights and correlating weights
- Using global and per-branch history
 - An array of per-branch histories is kept, alloyed with global history
- Slightly bias the predictor toward not taken
- Dynamically adjust history length
 - Based on an estimate of the number of static branches
- Extra weights
 - Extra bias weights for each branch
 - Extra correlating weights for more recent history bits
- Inverted bias weights that track the opposite of the branch bias

Parameters to the Algorithm

#define NUM WEIGHTS 8590 #define NUM BIASES 599 #define INIT GLOBAL HISTORY LENGTH 30 #define HIGH GLOBAL HISTORY LENGTH 48 #define LOW GLOBAL HISTORY LENGTH 18 #define INIT LOCAL HISTORY LENGTH 4 #define HIGH LOCAL HISTORY LENGTH 16 #define LOW LOCAL HISTORY LENGTH 1 #define EXTRA BIAS LENGTH 6 #define HIGH EXTRA BIAS LENGTH 2 #define LOW EXTRA BIAS LENGTH 7 #define EXTRA HISTORY LENGTH 5 #define HIGH_EXTRA_HISTORY_LENGTH 7 #define LOW EXTRA HISTORY LENGTH 4 #define INVERTED BIAS LENGTH 8 #define HIGH INVERTED BIAS LENGTH 4 #define LOW INVERTED BIAS LENGTH 9

#define NUM HISTORIES 55 #define WEIGHT WIDTH 7 #define MAX WEIGHT 63 #define MIN WEIGHT -64 #define INIT THETA_UPPER 70 #define INIT THETA LOWER -70 #define HIGH THETA UPPER 139 #define HIGH THETA LOWER -136 #define LOW THETA UPPER 50 #define LOW_THETA_LOWER -46 #define HASH PRIME 1 511387U #define HASH PRIME 2 660509U #define HASH PRIME 3 1289381U #define TAKEN THRESHOLD 3

All determined empirically with an *ad hoc* approach

References

- Me and Lin, HPCA 2001 (perceptron predictor)
- Me and Lin, TOCS 2002 (global/local perceptron)
- Me, MICRO 2003 (path-based neural predictor)
- Juan, Sanjeevan, Navarro, SIGARCH Comp. News, 1998 (dynamic history length fitting)
- Skadron, Martonosi, Clark, PACT 2000 (alloyed history)

The End

Program to Compute XOR

int f () { int a, b, x, i, s = 0; for (i=0; i<100; i++) { a = rand () % 2;b = rand () % 2;if (a) { if (b) x = 0;else x = 1; } else { if (b) x = 1; else x = 0;} if (x) s++; /* this is the branch */ } return s; }