
Journal of Instruction-Level Parallelism 7 (2005) 1-11 Submitted 01/05; published 04/05

Idealized Piecewise Linear Branch Prediction

Daniel A. Jiménez djimenez@cs.rutgers.edu

Department of Computer Science

Rutgers University

Piscataway, NJ 08854

Abstract

Traditional branch predictors exploit correlations between pattern history and branch
outcome to predict branches, but there is a stronger and more natural correlation between
path history and branch outcome. I exploit this correlation with piecewise linear branch
prediction, an idealized branch predictor that develops a set of linear functions, one for
each program path to the branch to be predicted, that separate predicted taken from predicted
not taken branches. Taken together, all of these linear functions form a piecewise linear
decision surface.

Disregarding implementation concerns modulo a 64.25 kilobit hardware budget, I present
this idealized branch predictor for the first Championship Branch Predictor competition. I
describe the idea of the algorithm and as well as tricks used to squeeze it into 64.25 kilobits
while maintaining good accuracy.

1. Introduction

This paper describes my entry into the 1st JILP Championship Branch Prediction Com-
petition [3]. It is based on piecewise linear branch prediction [4], a generalization of both
perceptron and path-based neural branch predictors [5, 2]. I paid no attention whatsoever
to issues of implementation such as delay or numbers of gates in random logic. My only
concerns were accuracy and keeping to the 64.25 kilobit limit on state. The algorithm uses
only branch address and outcome information.

1.1 The Branch Prediction Problem

For the purposes of this paper, branch prediction refers to the problem of predicting the out-
come, taken or not taken, of a conditional branch given only the address of the current branch
and the addresses and outcomes of previous branches. Branch predictors enable pipelining
of microprocessors by allowing instructions to be fetched and speculatively executed beyond
branch instructions whose outcomes have not yet been computed. Improvements in branch
prediction accuracy translate directly into improvements in processor performance.

1.2 The Perceptron Predictor

The original perceptron predictor learns the equation of a hyperplane in n dimensional
space where n is the history length for the predictor. Dynamic branches whose pattern
histories lie above the hyperplane are predicted not taken while pattern histories below the
hyperplane are predicted taken. This scheme is highly accurate in practice, but cannot
capture the nuanced behavior of certain branches.

Jiménez

1.3 Piecewise Linear Branch Prediction

Piecewise linear branch prediction learns the equation of several hyperplanes based on the
path leading up to the branch to be predicted. The intersection of these hyperplanes forms
the decision surface for prediction. Figure 1 shows a piecewise linear decision surface for
predicting a branch whose outcome is equal to the exclusive-OR of the outcomes of the
last two branches. This branch cannot be predicted with more than 50% accuracy with
perceptrons. However, piecewise linear branch prediction classifies it perfectly.

Figure 1: A piecewise linear decision surface for XOR

Section 2 describes the idea of the algorithm. Section 4 gives a list of tricks used to make
the algorithm more accurate. Section 6 computes the size of the predictor to show that it
stays within the limits imposed by the contest. This paper is an expanded version of a paper
presented at the 1st JILP Championship Branch Prediction Competition (CBP-1) [3]. The
reader is referred to the CBP web site [7] for more information about the contest.

2. The Idea of the Algorithm

I present an algorithm in Algol-like pseudocode that captures the idea of the algorithm
without going into too much detail.

2.1 Variables

The following variables are used by the algorithm:

W A three-dimensional array of integers. Addition and subtraction on elements of W

saturate at +127 and -128. The dimensions of the array are arbitrarily large, i.e., large
enough to accommodate any access that might be made during the algorithm.

GHL The global history length. This is a small integer.

GHR The global history register. This vector of bits accumulates the outcomes of branches
as they are executed. Branch outcomes are shifted into the first position of the vector.

GA An array of addresses. As branches are executed, their addresses are shifted into the
first position of this array. In the implementation, the elements of the array are simply the
lower 8 bits of the branch address.

2

Idealized Piecewise Linear Branch Prediction

function predict (address: integer): boolean
begin

(* output is initialized to bias weight *)
output := W [address, 0, 0]
(* sum weights (or their negations) chosen using
the addresses of the last GHL branches *)
for i in 1..GHL do

if GHR[i] = true then

(* if the ith branch in *)
output := output + W [address,GA[i], i]

else
(* otherwise subtract it *)
output := output − W [address,GA[i], i]

end if
end for
(* predict the branch taken if the output is at least 0 *)
predict := output ≥ 0

end

Figure 2: Prediction algorithm: sums along a path to the branch to be predicted

output An integer. This integer is the dot product of a weights vector chosen dynamically
and the global history register.

2.2 Prediction and Update Algorithms

Figure 2 shows the function predict that computes the Boolean prediction function. The
function accepts the address of the branch to be predicted as its only parameter. The
branch is predicted taken if predict returns true, not taken otherwise. Figure 3 shows
the procedure train that is used when the branch is executed and it is time to update the
predictor. It accepts two parameters: the address of the branch and a Boolean value that
is true if and only if the branch was taken. It assumes that all variables retain the values
they had at the end of the invocation of predict for this branch.

3. Examples

Perceptrons learn the equation of a hyperplane that forms a decision surface in the feature
space. For branch prediction, the feature space is the outcomes of previous branches.
Consider a global history length of 2. The last branch executed has outcome x which
is positive if the branch was taken, negative otherwise. The second-to-last branch has
an outcome of y. The perceptron predictor learns the coefficients m1, m2, and b for the
equation of a plane z = m1x+m2y + b. The coefficients m1 and m2 are correlating weights
and b is the bias weight. If x and y fall below the decision surface, i.e., z > 0, then the
current branch is predicted taken, otherwise it is predicted not taken.

3

Jiménez

procedure train (address: integer; taken: boolean)
begin

if |output| < θ or output ≥ 0 6= taken then
if taken = true then

W [address, 0, 0] := W [address, 0, 0] + 1
else

W [address, 0, 0] := W [address, 0, 0]− 1
end if
for i in 1..GHL

if GHR[i] = taken then
W [address,GA[i], i] := W [address,GA[i], i] + 1

else
W [address,GA[i], i] := W [address,GA[i], i] − 1

end if
end for

end if
GA[2..GHL] := GA[1..GHL − 1]
GA[1] := address
GHR[2..GHL] := GHR[1..GHL − 1]
GHR[1] := taken

end

Figure 3: Training algorithm: uses perceptron learning to update the weights used for pre-
dicting this branch

4

Idealized Piecewise Linear Branch Prediction

The piecewise linear branch predictor learns the equations of several hyperplanes. For
any given prediction, the coefficients for that prediction are identified using the path lead-
ing to the current branch. Taken together, each of the hyperplanes used for successive
predictions forms a piecewise linear decision surface in the feature space.

Figure 4 (a) shows the AND function represented in two-dimensional space. A white
dot means false, i.e. not taken, and a black dot means true, i.e. taken. In terms of branch
prediction, this figure represents a branch that is taken if any only if both of the previous
branches in the global branch history were taken. Figure 4 (b) shows a 2-dimensional
representation of the intersection of the z = 0 plane and a decision surface learned by
the perceptron predictor for the AND function. The darker shaded region indicates points
below the decision surface, i.e. x, y coordinates for which the predictor predicts taken. The
lighter shaded region indicates points above the decision surface for which not taken would
be predicted. Figure 4 (c) shows a decision surface learned by piecewise linear branch
prediction. Both algorithms separate the AND function perfectly.

(a) (b) (c)

Figure 4: The AND function (a), a perceptron decision surface (b), and a piecewise linear
decision surface (c)

Figure 5 (a) shows the XOR function, i.e., a branch that is taken if and only if the
previous branches in the global history had behaviors opposite from one another. Figure 5
(b) shows a decision surface learned by the perceptron predictor. This surface classifies
instances correctly only 50% of the time. Clearly, a single plane cannot separate the taken
and not taken instances of the XOR function. Thus, XOR is linearly inseparable [1, 6].
Nevertheless, Figure 5 (c) shows a decision surface learned by piecewise linear branch pre-
diction that perfectly separates taken from not taken instances. Using path information
from the program that contains the branches in question, a piecewise linear decision surface
is learned that classifies the XOR function correctly.

4. Tricks

In this section, I describe a number of tricks used to fit the predictor into 64.25 kilobits
as well as achieve good accuracy. A number of parameters to the algorithm were chosen
empirically. Table 4 shows descriptions and values of these parameters.

5

Jiménez

Parameter Value

Total number of correlating weights 8590

Total number of bias weights 599

First prime for hashing (H1) 511,387

Second prime for hashing (H2) 660,509

Third prime for hashing (H3) 1,289,381

Predict taken if output is at least 3

Number of local histories 55

Number of bits per weight 7

Maximum weight value 63

Minimum weight value -64

Dynamically fitted parameter Initial High Low

Global history length 30 48 18

Local history length 4 16 1

Number of extra bias weights 6 2 7

Extra global history length 5 7 4

Number of inverted bias weights 8 4 9

Upper value for θ 70 139 50

Lower value for θ -70 -136 -46

Table 1: Empirically chosen parameters to the algorithm

6

Idealized Piecewise Linear Branch Prediction

(a) (b) (c)

Figure 5: The XOR function (a), a perceptron decision surface (b), and a piecewise-linear
decision surface (c)

4.1 Hashing

An arbitrary-sized three-dimensional array has the potential to exceed the 64.25 kilobit
limit for the contest. So I use hashing to map indices of the arbitrary-sized array into
locations of finite-sized table. Some triples of indices will collide with one another in the
table, possibly causing destructive interference. I settled on the following hash function that
seems to reduce interference over other functions I tried. Let N be the number of weights
in the finite-sized table. Let H1, H2, and H3 be prime numbers chosen empirically. Then
the hash function is:

function hash (i,j,k : integer): integer
begin

hi := i × H1

hj := j × H2

hk := k × H3

hash := (hi xor hj xor hk) mod N

end

4.2 Separating Bias Weights from Other Weights

I divided the weights into two pools: a pool of bias weights and a pool of general weights.
Bias weights and general weights have different properties, e.g. the bias weight is usually
much more correlated with branch outcome than any particular history weight, and the
same bias weight is always used for a given static branch. Separating the weights into
these two pools allows the sizes of these pools to be determined empirically. It also enables
another optimization described below, dynamic adjusting the history length.

4.3 Using Global and Per-Branch History

To boost accuracy, I used a combination of global and per-branch history rather than just
global history as outlined in the algorithms above. A table of per-branch histories is kept

7

Jiménez

and indexed by branch address modulo number of histories. These histories are incorporated
into the computations for the prediction and training in the same way as the global histories.
This technique was used in the perceptron predictor [6] and has been referred to as alloyed
branch prediction in the literature [9]. These parameters were chosen empirically.

4.4 Adjusting the Threshold for Taken Branches

The algorithm predicts a branch to be taken if the value of output is at least 0. It turns out
that most of branches in the distributed traces are biased to be not taken, so changing this
threshold from 0 to 3 gives slightly better accuracy.

4.5 Dynamically Adjusting the History Length

With a large number of static branches, destructive interference can be a big problem. One
solution is to use a shorter global and local history length so that fewer weights are involved
in any particular prediction. After 300,000 branches have passed, my predictor estimates
the number of static branches by counting all of the bias weights whose magnitudes exceed
2. If this number exceeds 300, then the predictor switches to lower global and local history
lengths; otherwise, it switches to higher global and local history lengths. These history
lengths as well as the figures 300,000 and 300 were determined empirically. Higher, lower,
and initial values for these parameters are labeled as High, Low, and Initial, respectively,
in Table 4. An idea of changing history length dynamically is described in [8].

4.6 Extra Weights

The bias weight and the first several global weights are repeated. That is, the algorithm
uses other sources for these weights as well as the original source. Thus, a branch has more
than one bias weight: one from the pool of bias weights and several from the pool of general
weights. A branch also has more than one of each of the first several global weights. This
improves accuracy by reducing the effect of destructive interference as well as emphasizing
the relative predictive power of these weights in computing the output of the predictor. The
number of extra weights is determined empirically and dynamically adjusted as described
above.

4.7 Inverted Bias Weights

A bias weight is normally incremented when a branch is taken and decremented otherwise.
I found that it is helpful to have extra bias weights that are decremented when a branch is
taken and incremented otherwise, and subtracted from the output rather than added. The
number of these inverted weights to use is determined empirically and dynamically adjusted
as above.

5. Results

Table 2 gives the number of mispredictions per 1000 instructions (MPKI) for each bench-
mark as computed using the distributed infrastructure and my predictor. The average
MPKI over the benchmark suite is 2.952.

8

Idealized Piecewise Linear Branch Prediction

1 2 3 4 5

FP 1.625 0.973 0.428 0.192 0.172

INT 1.687 6.004 6.795 1.388 0.309

MM 6.957 9.047 0.637 1.421 4.773

SERV 2.492 2.405 4.890 3.577 3.270

Table 2: Mispredictions per 1000 Instructions

6. The Size of the Predictor

To simplify accounting for the sizes of these variables, all variables representing predictor
state are declared as fields of the class PREDICTOR. I only count the bits in each variable
that are actually used by the algorithm, e.g. the signed variable theta upper only accounts
for 9 bits since its maximum magnitude never exceeds 255, even though it is represented
by a 16-bit short int. Each of the weights is 7 bits since their maximum and minimum
values are 63 and -64, respectively, even though they are represented by 8-bit signed chars.
Figure 3 shows how I compute the size of the state used for the predictor.

Quantity of bits Source of bits

7 * 8590 8590 7-bit general weights
+ 7 * 599 599 7-bit bias weights
+ 8 * 48 48 8-bit global addresses

+ 48 48 bits for global history register
+ 16 * 55 55 16-bit local history registers

+ 32 output of predictor is 32-bit int
+ 16 i is a 16-bit int used as loop index
+ 8 global history length is 8-bit int
+ 8 local history length is 8-bit int
+ 8 extra bias length is 8-bit int
+ 8 extra history length is 8-bit int
+ 8 inverted bias length is 8-bit int
+ 9 theta upper is 9-bit signed int
+ 9 theta lower is 9-bit signed int

+ 16 lh is a 16-bit local history
+ 32 ntimes is a 32-bit int

65789 total number of bits

Table 3: Computing the total number of bits used

The total number of bits used by my predictor is 65,789, which is less than the 64K +
256 = 65,792 bits allowed for the contest.

9

Jiménez

7. Acknowledgements

This research is supported by NSF Grant CCR-0311091. During the preparation of the
final version of this paper the author has been on sabbatical leave from Rutgers and kindly
hosted by the Departament D’Arquitectura de Computadors at the Universitat Politècnica
de Catalunya. Thanks to Mateo Valero for facilitating this stay.

References

[1] Laurene Fausett. Fundamentals of Neural Networks: Architectures, Algorithms and
Applications. Prentice-Hall, Englewood Cliffs, NJ, 1994.

[2] Daniel A. Jiménez. Fast path-based neural branch prediction. In Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-36),
pages 243–252. IEEE Computer Society, December 2003.

[3] Daniel A. Jiménez. Idealized piecewise linear branch prediction. In Proceedings of the
First JILP Championship Branch Predictor Competition (CBP-1), December 2004.

[4] Daniel A. Jiménez. Piecewise linear branch prediction. In Proceedings of the 32nd
Annual International Symposium on Computer Architecture (ISCA-32), June 2005.

[5] Daniel A. Jiménez and Calvin Lin. Dynamic branch prediction with perceptrons. In
Proceedings of the 7th International Symposium on High Performance Computer Archi-
tecture (HPCA-7), pages 197–206, January 2001.

[6] Daniel A. Jiménez and Calvin Lin. Neural methods for dynamic branch prediction.
ACM Transactions on Computer Systems, 20(4):369–397, November 2002.

[7] The Journal of Instruction-Level Parallelism. The 1st JILP Championship Branch Pre-
diction Competition (CBP-1), http://www.jilp.org/cbp, December 2004.

[8] Toni Juan, Sanji Sanjeevan, and Juan J. Navarro. Dynamic history-length fitting: a third
level of adaptivity for branch prediction. SIGARCH Comput. Archit. News, 26(3):155–
166, 1998.

[9] Kevin Skadron, Margaret Martonosi, and Douglas W. Clark. A taxonomy of branch
mispredictions, and alloyed prediction as a robust solution to wrong-history mispredic-
tions. In Proceedings of the 2000 International Conference on Parallel Architectures and
Compilation Techniques, pages 199–206, October 2000.

10

