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Abstract

The states of the 2-bit counters used in many branch prediction schemes can be divided
into “strong” and “weak” states. Instead of the typical saturating counter encoding of the
states, the 2-bit counter can be encoded such that the least significant bit directly represents
whether the current state is strong or weak. This extra bit provides hysteresis to prevent the
counters from switching directions too quickly. Past studies have exploited the strong bias
of the direction bit to construct better branch predictors. We show that counters exhibit a
strong bias in the hysteresis bit as well, suggesting that an entire bit dedicated to hysteresis
is overkill. Using data-compression techniques, we empirically demonstrate that the in-
formation theoretic entropy of the hysteresis bit conveys less than 0.18 bits per prediction
of information for agsharebranch predictor. We explain how to construct fractional-bit
shared split counters(SSC) by sharing a single hysteresis bit between multiple counters. We
show that predictors implemented with shared split counters perform nearly as well as the
corresponding two-bit counter versions, while providing area reductions of 25-37.5%.

1. Introduction

Ever since the saturating 2-bit counter was introduced for dynamic branch prediction, it has been the
default finite state machine used in most branch predictor designs. Smith observed that using two
bits per counter yields better predictor performance than using a single bit per counter, and using
more than two bits per counter does not improve performance any further [1]. The question this
study addresses is somewhat odd: does a two-bit counter perform much better than ak-bit counter,
for 1 < k < 2? If not, the size of the branch predictor can be reduced tok

2 of its original size. This
naturally leads to asking if, for example, a 1.4-bit counter even makes any sense. We do not actually
design any 1.4-bit counters, but instead we propose counters that have fractional costs by sharing
some state between multiple counters.

Each bit of the two-bit counter plays a different role. The most significant bit, which we refer
to as thedirection bit, tracks the direction of branches. The least significant bit provides hysteresis
which prevents the direction bit from immediately changing when a misprediction occurs. The
Merriam-Webster dictionary’s definition of hysteresis is “a retardation of an effect when the forces
acting upon a body are changed,” which is a very accurate description of the effects of the second bit
of the saturating two-bit counter. We refer to the least significant bit of the counter as thehysteresis
bit throughout the rest of this paper.
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Although the hysteresis bit of the saturating two-bit counter prevents the branch predictor from
switching predicted directions too quickly, if most of the counters stay in the strongly taken or
strongly not-taken states most of the time, then perhaps this information can be shared between
more than one branch without too much interference. In this study, we examine how strong the
biases of the hysteresis bits of the branch prediction counters are, and then use this information to
motivate the design of more compact branch predictors.

Although the trend in branch predictor design appears to be toward larger predictors for higher
accuracy, the size of the structures can not be ignored. The gains from higher branch prediction ac-
curacy can be negated if the clock speed is compromised [2]. Our shared split counters may enable
the reduction of the area requirements of branch predictors, which leads to shorter wire lengths and
decreased capacitative loading, which in turn may result in faster access times. Compact branch pre-
diction structures may also be valuable in the space of embedded processors where smaller branch
prediction structures use up less chip area and require less power.

The rest of this paper is organized as follows. Section 2 provides a brief overview of basic
information theory and discusses some related research in branch prediction. Section 3 presents
an analysis of the bias of the hysteresis bit in branch prediction counters. Section 4 describes the
hardware organization for our shared split counters as well the performance results. Section 5
classifies the types of mispredictions that arise due to shared hysteresis bits and explains why the
sharing does not induce very many additional mispredictions. Finally, Section 6 draws some final
conclusions.

2. Background

In this paper, we use an information theoretic approach to analyze the patterns and behavior of the
hysteresis bit in branch predictors. The first part of this section provides a brief review of some
basics in information theory. The remainder of the section provides additional context for this paper
by discussing related branch prediction research.

2.1 A Brief Information Theory Primer

Information theory was first developed by Claude Shannon to address the issues of encoding signals
for transmission over noisy channels. The theory addresses the information of the signal source,
the information capacity of the channel, and how to encode the message to match the capacity of
the channel. The terminformation is used in its technical sense, which we will define below. In
the context of this paper, and in information theory in general, the term information should not
be confused with difficult to define terms like “knowledge”. We will first present an informal,
qualitative discussion on information, and then proceed to the technical definitions.

We will use a few simple sentences to provide an example of differentmessagesthat convey
different amounts of information. Consider the following sentences:

1. I woke up today.

2. I went to work today.

3. I won the lottery today.

If someone were to state the first sentence, it would not be very surprising to hear, and in some
sense conveys very little information because waking up is an action that almost every living person
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performs everyday. The second sentence may provide some additional information, because if the
person went to work, then it is likely that today is not Saturday or Sunday. The last sentence
conveys a large amount of information because winning the lottery is an event that is not likely to
happen to someone on a regular basis. From these examples, we can see that our intuitive notion of
information is correlated with the uncertainty or probability of the occurrence of an event. In terms
of information theory, we are more interested inmessagesthan events, but the same idea applies:
messages with low probabilities convey more information.

The formal definition of a message’s information depends on the probability of that message.
Assume a messagexi has a probability ofP (xi) = Pi of occurring. Then,Ii is the information or
self-informationof the message:

Ii = − logb Pi = logb
1
Pi

whereb is the logarithmic base. The units of information depends on the choice ofb, although
typically b = 2 which gives the information in units of bits. Shannon chose the logarithmic function
because it is the only function that satisfies the following properties:

1. The information is never negative (Ii ≥ 0 for Pi ∈ [0, 1]).

2. The information tends to zero as the probability of the message becomes a certainty
(limPi→1 Ii = 0).

3. The less likely that a message occurs, the more information the message will convey (Ii > Ij
for Pi < Pj).

4. The information conveyed by two independent messages is equal to the sum of the infor-
mation of the individual messages (Iij = logb

1
PiPj

= logb
1
Pi

+ logb
1
Pj

= Ii + Ij when

P (xixj) = P (xi)P (xj)).

In computer engineering, the “messages” that are usually used are the two symbols “0” and “1”.
Note that if each of these two occur with a equal probability ofP0 = P1 = 1

2 , then the information
of each symbol isI0 = I1 = log2

1
1/2 = log2 2 = 1 bit. A binary digit (bit) can represent any set

of two messages, but this should not be confused with a bit ofinformationsince a particular zero
or one may represent more or less than a single bit of information when the probabilities are not
uniform.

A sourceX that emits a sequence of messages or symbols has a correspondingentropyor in-
formation per symbol. Assuming the source generates successive symbols with independent prob-
abilities, the total amount of information for a sequence ofk symbolsx1, x2, ..., xk is the sum of
the individual information

∑k
i=1 xi. As the number of symbols increases,k � 1, the expected

information per symbol is equal to

H(X) =
k∑
i=1

PiIi =
k∑
i=1

Pi log2

1
Pi

whereH(X) is theentropyof the sourceX, and is given in units of bits per symbol. Note that the
information rateof X is a measure of the bits per second, and so is equal to the entropy times the
symbol generation rate.
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Figure 1: The gshare branch predictor combines both the program counter and global branch history
to index into the pattern history table.

In this research, we use the ideas of information theory to measure the entropy of the hysteresis
bits in branch predictor counters. The results motivate a predictor structure that uses fewer bits to
encode approximately the same information that is represented by the original two-bit saturating
counter organization.

2.2 Related Branch Prediction Research

Hysteresis in dynamic branch predictors reduces the number of mispredictions caused byanoma-
lous decisions. If a particular branch instruction is predominantly biased in the taken direction
for example, a single bit of state recording the branch’s most recent direction will make two mis-
predictions if a single not-taken instance is encountered (for example, at a loop exit). The first
misprediction is due to the anomalous decision, and the second misprediction is due to the previous
branch throwing off the recorded direction of the branch. The most common mechanism to avoid
this extra misprediction is the saturating 2-bit counter introduced by Smith [1].

Smith’s branch predictor maintains a table of 2-bit counters indexed by the branch address.
Pan et al [3] and Yeh and Patt [4] [5] [6] studied how to combine branch outcome history with the
branch address to correlate branch predictions with past events. The index is formed by concatenat-
ing n bits of the branch address with the outcomes of the lastm branch instructions. This index of
lengthm+ n is used to look up a prediction in a2m+n-entry table of 2-bit counters.

The prediction schemes presented by Yeh and Patt use a table of2m+n two-bit counters. To
prevent the table from becoming unreasonably large, the summ + n must be constrained. This
forces the designer to make a tradeoff between the number of branch address bits used, which
differentiate static branches, and the number of branch history bits used, which improve prediction
performance by correlating on past branch patterns. McFarling proposed thegsharescheme that
makes better use of the branch address and branch history information [7]. Figure 1 illustrates how
the global branch history is xor-ed with the program counter to form an index into the pattern history
table (PHT). The most significant bit of the 2-bit counter in the indexed PHT entry, the direction bit,
is used for the branch prediction. With this approach, many more unique{branch address, branch
history} pairs may be distinguished, but the opportunities for unrelated branches to map to the same
two-bit counter also increase. Much research effort has addressed the interference in gshare styled
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predictors [8] [9] [10] [11] [12] [13]. Many of these predictors exploit the fact that the direction of
the counters in the table are strongly biased in one direction or the other.

One such approach is theagreepredictor [13]. Sprangle et al make the observation that the
direction of most branches is highly biased. The agree predictor takes advantage of this by storing
the predicted direction outside of the counter in a separatebiasing bit, and then reinterpreting the
two-bit counter as an “agreement predictor” (i.e. do the branch outcomes agree with the biasing
bit?). The biasing bit is stored in the branch target buffer (BTB), and is initialized to the first
outcome of that particular branch. This scheme reduces some of the negative effects of interference
by converting branches that conflict in predicted branch direction to branches that agree with their
bias bits.

The Bi-Mode algorithm is another predictor that reduces interference in the PHT [10]. Achoice
PHT stores the predominant direction, orbiasof the branch (the bias in the context of the Bi-Mode
predictor is a separate concept from the biasing bit of the agree predictor). The bias is then used to
select one of twodirection PHTs. The idea is that branches with a taken bias will be sorted into one
PHT, while branches with a not-taken bias will be sorted into the other PHT. If interference occurs
within a direction PHT, the branches are likely to have similar biases, thus converting instances of
destructive aliasing into neutral interference (see Section 4.2, Figure 7 for a diagram of the Bi-Mode
predictor).

The gskewed predictor takes a voting-based approach to reduce the effects of interference [12].
Three different PHT banks are indexed with three different hashes of the branch address and branch
history. A majority vote of the predictions from each of the PHTs determines the overall prediction.
With properly chosen hash functions, two{branch address, branch history} pairs that alias in one
PHT bank will not conflict in the other two, thus allowing the majority function to effectively ignore
the vote from the bank where the conflict occurred.

The branch predictor designed for the terminated EV8 processor used a gskewed derived hybrid
predictor [14]. The first gskewed PHT bank, calledBIM for bimodal, only makes use of the branch
address for indexing where as the other two banks, G0 and G1, use an exclusive-or of the branch
address and branch history. An additional bank,Meta, decides whether the final prediction should
come from the BIM bank, or from the majority vote of all three banks. Of particular interest in
relation to this paper, the EV8 hysteresis arrays for the Meta and G1 banks only use half the number
of entries than in the direction arrays. In this paper, our predictor uses a slightly different finite
state machine, we explore more aggressive reductions in the hysteresis array size, and we provide
an analysis for why sharing hysteresis bits between multiple counters does not have a large impact
on prediction accuracy.

3. How Many Bits Does it Take?

3.1 Branch Prediction Counters

An important result of the agree predictor study [13] is that the branch direction and other dynamic
predictor state can be separated. One of the reasons that the agree predictor is able to reduce the
effects of destructive interference is that although there are aliasing conflicts for some of the pre-
dictor’s state (namely the agree counters), this conflict may not impact the prediction of a particular
branch if there is no aliasing of the recorded branch directions.

The two-bit counter is simply a finite state machine with state transitions and encodings that
correspond to saturating addition and subtraction. The state diagram is depicted in Figure 2(a).
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Figure 2: (a) The saturating 2-bit counter finite state machine (FSM). The most significant bit of
the state encoding specifies the next predicted branch direction. (b) Another FSM that is
functionally equivalent to the saturating 2-bit counter, but the states are renamed such that
the most significant bit specifies the next prediction, and the least significant bit indicates
a strong or weak prediction.

Solid arrows correspond to transitions made when the prediction was correct and dashed arrows
correspond to the state transitions when there was a misprediction. The most significant bit of the
state encoding is used to determine the direction of the branch prediction. For example, all states
with an encoding of 1X (X denotes either 0 or 1) predict taken. By itself, the least significant bit
does not convey any useful information. Paired with the direction bit, the least significant bit denotes
a strongprediction when it is equal to the direction bit (states 00 and 11), and aweakprediction
otherwise. This additional bit provides hysteresis so the branch predictor requires two successive
mispredictions to change the predicted direction.

The assignment of states in a finite state machine are more or less arbitrary since the assigned
states are merely names or labels. Because of this, an alternate encoding can be given to the two-
bit counter. Figure 2(b) shows the state diagram for the renamed finite state machine. The state
diagrams are isomorphic; only the labels for the two not-taken states have been exchanged. The
most significant bit of the counter still denotes predicted direction, but the least significant bit can
now be directly interpreted as being weak or strong. For example, if this hysteresis bit is 1, then a
strong prediction was made; we refer to these states as thestrong states. We call this renamed finite
state machine thesplit counterbecause the strength of the state can be directly inferred from the
hysteresis bit even when the hysteresis bit has been separated orsplit from the direction bit.

3.2 Bias of Counter States

The counters used in the agree predictor are effective because branches that alias to the same counter
frequently agree with their separate biasing bits. This would make the agree counters tend to the
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Benchmark Data Set Strong State
Name Predictions

164.gzip ref-graphic 0.900425
ref-log 0.925201

ref-program 0.890077
ref-random 0.919332
ref-source 0.901446

175.vpr ref-place 0.860060
ref-route 0.941841

176.gcc ref-166 0.971020
ref-200 0.937520
ref-expr 0.953444

ref-integrate 0.961725
ref-scilab 0.937154

181.mcf ref 0.915599
186.crafty ref 0.921647
197.parser ref 0.939315

Benchmark Data Set Strong State
Name Predictions

243.perlbmk ref-makerand 0.997504
ref-splitmail 0.975547
train-scrabble 0.959799

252.eon ref-cook 0.969624
ref-kajiya 0.927652

ref-rushmeier 0.952164
254.gap ref 0.946384
255.vortex ref-1 0.974275

ref-2 0.974035
ref-3 0.975125

256.bzip2 ref-graphic 0.951196
ref-program 0.930332
ref-source 0.909522

300.twolf ref 0.860225
Average 0.937213

Table 1: The fraction of strong state predictions is calculated by taking the number of branch pre-
dictions made in a strong state (strongly taken, or strongly not-taken), and dividing by the
total number of predictions.

“agree strongly” state despite the aliasing. If the states of the regular two-bit counters tend to be
heavily biased toward the strong states, then perhaps the bit used to provide hysteresis can also be
shared among different branches.

To determine whether or not the hysteresis bits tend to be highly biased toward the strong states,
we simulated a gshare predictor with 8192 (8K) two-bit counters in the pattern history table (PHT)
and 13 bits of global branch history. We simulated one billion branches from each of the SPEC2000
integer benchmarks. Section 3.3.1 provides the full details of our simulation methodology. For each
benchmark, we tracked the number of strong state predictions and the total number of predictions
made. Table 1 shows how many of the dynamic branch predictions made in the SPEC2000 inte-
ger benchmarks were either strongly taken or strongly not-taken. Note that these statistics were
collected for a small predictor which would have more interference than larger configurations.

For most benchmarks, the branch predictor counters remain in one of the two strong states for
over 90% of the predictions made. Since most branches tend to be highly biased toward the strong
states, this suggests that perhaps one bit per counter for hysteresis may be an overkill. Two questions
naturally follow. First, how many hysteresis bits are actually needed per counter? Second, because
the number of hysteresis bits needed per counter will be less than one, how can a “fractional-bit”
counter be implemented? We answer the first question by obtaining an upper bound for the amount
of information conveyed by the hysteresis bit. We then present the design of a counter that has a
fractional-bit cost in Section 4.
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3.3 Entropy of Hysteresis Bits

The hysteresis bit bias results suggest that it is very likely that the entropy of the bits is less than
one bit per prediction. LetS(x) be thestrengthof a counterx, where

S(x) =
{

0 if x ∈{weakly taken, weakly not-taken}
1 if x ∈{strongly taken, strongly not-taken}

which directly encodes whether the state of a counter is in a strong state or a weak state. Note that
the value of the hysteresis bit of our split counter is always equal toS. To proceed, we need a way
to measure the entropy ofS(x). Shannon’s Theorem states that if the information rate of a source is
less than or equal to the capacity of the channel, then there exists an encoding of the source symbols
which allow the transmission of the symbols with arbitrarily small probability of errors even if the
channel itself is noisy. For our purposes, we are not concerned about transmission errors. Our
information is the strength of a predictor stateS(x), and our “channel capacity” is the number of
bits we use to store this information (that is one bit per counter).

Our approach is to find a compact encoding of the symbols, which implies that the entropy of the
source is not greater than the average bits per symbol in our compacted representation. For example,
if we can compress 100 bits in a lossless manner down to 47 bits, then the entropy corresponding
to the source that generated these bits is at most 0.47 bits per symbol. The entropy may be less if
our encoding is not optimal, but compressing the symbols proves by construction that the entropy is
bounded by the achieved compression rate. In this section, we do not provide an exact measure of
the hysteresis bit entropy, but rather use data-compression techniques to provide an upper bound on
H(S).

3.3.1 METHODOLOGY

We used a simulation-based approach to generate all of the results presented in this paper. Our
simulator is derived from the SimpleScalar toolset [15] [16]. We used the in-order simulatorsim-
safe to collect traces of one billion conditional branches from each of the simulated benchmarks.
Due to the in-order nature of the branch trace generation, these traces do not include discarded
branches from mispredicted execution paths. We use the traces to drive a branch predictor simulator
to measure branch prediction accuracies.

We collected the branch traces from the SPEC2000 integer benchmarks. The benchmarks
were compiled on an Alpha 21264 withcc -g3 -fast -O4 -arch ev6 -non shared .
The benchmarks, input sets and number of initial instructions skipped are all listed in Table 2.
We collected exactly one billion conditional branches from each benchmark-input pair, except for
perlbmk.makerand , perlbmk.splitmail and vpr.place which completed execution
before one billion branches. Note that one billion branches approximately corresponds to five to six
billion total instructions. The fastforward amounts were chosen to skip over the initial setup phases
of the applications. When applicable, the sampling window was also placed to collect branches from
different sections of the program [17]. For example, in the compression applications (bzip2 and
gzip ), the branches are taken from both the compressing and decompressing phases of execution.

To measure the entropy conveyed by the strengths of predictor states, we instrumented our
branch predictor simulator to generate a log of the values ofS(x). For each counterxi in our 8K-
entry gshare predictor, we maintained a separate trace forS(xi). At the end of each simulation,
this provides one billion bits of data since each prediction provides one symbol. We concatenated
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Benchmark Input Set Instructions
Name Skipped (×109)

164.gzip ref-graphic 37.95
ref-log 15.55

ref-program 24.425
ref-random 30.89
ref-source 30.375

175.vpr ref-place 0.0
ref-route 24.975

176.gcc ref-166 7.85
ref-200 19.5
ref-expr 4.175

ref-integrate 2.5
ref-scilab 9.9

181.mcf ref 20.675
186.crafty ref 44.3
197.parser ref 18.4

Benchmark Input Set Instructions
Name Skipped (×109)

243.perlbmk ref-makerand 1.025
ref-splitmail 0.0
train-scrabble 22.025

252.eon ref-cook 11.5
ref-kajiya 16.5

ref-rushmeier 8.0
254.gap ref 29.5
255.vortex ref-1 26.7

ref-2 13.1
ref-3 14.85

256.bzip2 ref-graphic 49.7
ref-program 45.4
ref-source 42.6

300.twolf ref 10.125

Table 2: The SPEC2000 integer benchmarks and data sets used in our simulations, along with the
number of initial instructions skipped before collecting a trace of one billion conditional
branches.

all of the individual traces ofS(xi) into a single file and then encoded the data with thegzip
compression program using the--best flag. The size of the compressed trace divided by the
size of the original trace provides an upper bound on the entropy ofS(x). Using more advanced
compression techniques such as arithmetic coding could yield tighter bounds on the entropy, but
our results from usinggzip are sufficient to motivate our design of a more efficient predictor
organization.

3.3.2 RESULTS

The strong bias toward high confidence branch predictor states suggests that the information content
of the counter strengthS is less than one bit per prediction. The results in Table 3 demonstrate that
this is indeed the case. For each benchmark and data set, Table 3 lists the size of the trace of the
samples ofS, the compressed size of the trace when usinggzip , and the bound on the entropy of
S. There are no benchmarks that ever use more than one half bit per prediction, and on average only
about 0.2 bits are needed.

Information theory states that with the correct encoding, we could in fact design a branch predic-
tor counter that only uses 0.44 bits per counter for hysteresis (vpr.place has the highest entropy)
and still perform exactly the same as a full two-bit counter. The problem is that the process of deter-
mining an optimal code as well as the corresponding encoding/decoding logic are almost certainly
too expensive to implement in hardware. Instead, we propose a much simpler scheme that uses
fewer total hysteresis bits at the cost of a slight degradation in prediction accuracy.
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Benchmark Input Set Original Trace Compressed Entropy
Name Size (MB) Size (MB) (bits/symbol)

164.gzip ref-graphic 119.213 38.060 0.319261
ref-log 119.213 29.356 0.246252

ref-program 119.213 40.739 0.341731
ref-random 119.213 29.139 0.244429
ref-source 119.213 39.771 0.333611

175.vpr ref-place 35.760 15.549 0.434809
ref-route 119.213 19.435 0.163027

176.gcc ref-166 119.213 8.355 0.070087
ref-200 119.213 23.907 0.200541
ref-expr 119.213 16.099 0.135042

ref-integrate 119.213 8.065 0.067652
ref-scilab 119.213 23.583 0.197822

181.mcf ref 119.213 24.069 0.201896
186.crafty ref 119.213 38.190 0.320349
197.parser ref 119.213 23.690 0.198723
243.perlbmk ref-makerand 21.440 0.146 0.006794

ref-splitmail 9.883 0.828 0.083780
train-scrabble 119.213 2.458 0.020623

252.eon ref-cook 119.213 1.855 0.015564
ref-kajiya 119.213 26.265 0.220325

ref-rushmeier 119.213 11.800 0.098980
254.gap ref 119.213 7.627 0.063975
255.vortex ref-1 119.213 3.210 0.026925

ref-2 119.213 2.723 0.022838
ref-3 119.213 3.230 0.027091

256.bzip2 ref-graphic 119.213 25.485 0.213781
ref-program 119.213 29.562 0.247976
ref-source 119.213 36.499 0.306168

300.twolf ref 119.213 49.465 0.414935
Average 0.182895

Table 3: The entropy for the hysteresis bits is bounded by compressing a trace of all of the hysteresis
bits.
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4. Shared Split Counters

Our entropy results from the previous section suggest that it is possible to design branch predictor
structures that use less storage than traditional two-bit counters while maintaining comparable pre-
diction accuracies. We propose usingshared split counters(SSC) which reduce the storage require-
ments of two-bit counter based predictors. This section first describes the hardware organization of
shared split counter arrays, and then evaluates the performance of SSC branch predictors.

4.1 Counter Organization

We first discuss the hardware organization of our shared split counter predictors. The first two
aspects of the SSC predictors are array separation and shared hysteresis bits, both of which have
apparently been known and used in industry, but have only recently been published by the EV8
design team [14]. The last component of our SSC predictors is the split counter finite state machine
described in Section 3 that is similar to a saturating two-bit counter, but the hysteresis bit directly
encodes the value of the strength of the counter.

4.1.1 ARRAY SEPARATION

In a conventional branch predictor counter array organization, the prediction counters are stored
in a SRAM structure. Each entry of the SRAM consists of one two-bit counter, as illustrated in
Figure 3a. To perform a prediction, the predictor logic generates an index into the array. This
index may simply be the least significant bits of the branch address, or it may also include other
information such as branch history. The logic uses the direction bit of the indexed counter, and
predicts taken if the bit is one, and not-taken if the bit is zero. At the time of the predictor update,
the finite state machine logic uses the state encoded by both the direction and hysteresis bits and the
actual branch outcome to update the counter state.

An important observation is that the hysteresis bit is never directly needed for the lookup phase
of the branch predictor. As a result, the direction bits and the hysteresis bits may be stored in two
physically separate SRAM arrays, as shown in Figure 3b. Although the bits from two corresponding
entries in the direction array and hysteresis array still form a single logical two-bit counter, parti-
tioning the array may allow each individual SRAM to be smaller, and therefore faster. Since the
update phase of the predictor is not on the critical path, the hysteresis array may actually be placed
in an entirely different location from the direction array.

4.1.2 SHARED HYSTERESISBITS

With a single monolithic array ofn two-bit counters, it is only natural that there is a total ofn direc-
tion bits andn hysteresis bits. When the direction and hysteresis state is separated into two different
arrays, there is no reason that these two arrays must have the same number of entries. In the EV8
branch predictor, the number of entries in the hysteresis array is half that of the direction array.
This means that every two direction array bits share a single hysteresis bit. Figure 4a illustrates the
indexing of an eight-entry direction array and a four-entry hysteresis array with the same branch
address. Address A maps to entry 1102 in the direction array. In the case of the hysteresis array,
the index function ignores one additional address bit, mapping to entry 102. Figure 4b illustrates
conventional interference where a different address B maps to the exact same direction and hystere-
sis entries as address A. With shared counters, a third form of interference may occur. Figure 4c
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Index

Counter Array

Direction
Bits

Hysteresis
Bits

Hysteresis Array

Index

Direction Array

(a) (b)

Figure 3: (a) A single SRAM structure stores both direction and hysteresis bits for each counter.
(b) Two SRAM structures store the direction and hysteresis bits in separate locations.

shows an address C that maps to an entry in the direction array that does not conflict with either A
or B. On the other hand, there still remains an aliasing conflict in the hysteresis array. While shared
hysteresis bits reduce the area requirements of the hysteresis array, this additional interference will
cause additional branch mispredictions.

4.1.3 SPLIT COUNTERS

Using shared hysteresis bits may increase the amount of interference in the hysteresis array. Al-
though most counters spend the majority of the time in one of the strong states, sharing hysteresis
bits may make this impossible. Consider the two counters in Figure 5a where the counter addressed
by A is in the strongly taken state (112) and counter addressed by B is in the strongly not-taken
state (002). With the hysteresis bit sharing shown in Figure 5b, one of the two counters will be
forced into a weak state because the hysteresis bit has different values for the ST and SNT states in
a conventional 2bC encoding.

The split counter encoding of the two-bit counter provides a situation where the hysteresis bit is
the same for both ST and SNT states. The result is that two counters that share hysteresis bits may
both be in the strong states at the same time, as illustrated in Figure 5c.

In the remainder of this section, we considershared split counter(SSC) branch predictors that
use shared hysteresis arrays with the split counter FSM encoding. The notation SSCn gshare de-
notes a gshare predictor that uses the split counter encoding, and a hysteresis array that isn times
smaller than the original. Note that a SSC-1 predictor behaves identically to the corresponding 2bC
based predictor.

12
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Figure 4: (a) Mapping the branch address A to different sized direction and hysteresis arrays.
(b) The branch address B is different from A, but still maps to the same counter entries.
(c) Aliasing only in the hysteresis array.
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Figure 5: (a) Two distinct counters in a 2bC-based array may simultaneously be in strong states.
(b) Sharing hysteresis bits without the split counter encoding prevents counters which
alias in the hysteresis array to be in both strongly taken (ST) and strongly not-taken
(SNT) states simultaneously. (c) The split counter encoding allows counters that share
a hysteresis bit to both be in strong states.
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4.2 Performance

In the remainder of this section, we present our simulation results to evaluate the performance im-
pact of SSC predictors. In particular, we first focus on a SSC gshare predictor, and then also briefly
explore the impact of using shared split counters on a more sophisticated 2bC-based predictor.

4.2.1 GSHARE PREDICTORS

We first examine SSC versions of the 8K entry gshare predictor from Section 3. Table 4 shows
the misprediction rates for three predictors. The first is the original 2bC gshare, the second is for a
SSC2 gshare predictor, and the third is a SSC4 gshare predictor. Not surprisingly, as the degree of
sharing increases, the misprediction rates of the SSC predictors also increase. The bottom of Table 4
also lists the misprediction rate differential, which is the relative increase in the misprediction rate.
Going from a 2bC gshare to the SSC2 gshare increases the relative number of mispredictions by
2.8% on average, but reduces the SRAM storage requirements when measured by total number
of bits by 25%. Further increasing the degree of sharing to the SSC4 gshare provides a smaller
additional area savings of 12.5% for a total of 37.5% over the original gshare, while increasing
mispredictions by another 5.5%.

The entropy of the hysteresis bit also increases with the degree of sharing, as shown in Table 5.
When two counters are forced to share a single hysteresis bit, the entropy only increases slightly
from 0.181 bits/prediction to 0.194 bits/prediction. Note that the area cost for the 2bC gshare
is one full bit of hysteresis per counter, while SSC2 uses only 0.5 bits per counter. When the
degree of sharing increases to four (SSC4), the entropy increases by a greater amount, and this is
reflected by the increase in mispredictions. From an information theoretic perspective, using an
SSC organization makes better use of the hysteresis bits because each bit effectively conveys more
information and SSC uses fewer total bits.

The shared split counters achieve a greater coding efficiency. By coding efficiency, we mean
the amount of information divided by the storage used. For example, the 2bC gshare uses a full
hysteresis bit for every counter, but only provides 0.1809 bits per prediction. This has a coding
efficiency of 18.1%. In the SSC2 gshare, a single hysteresis bit is shared between two logical
counters, which can be viewed as 0.5 bits of hysteresis per counter. With an entropy of 0.1937 bits
per prediction, the SSC2 gshare achieves a coding efficiency of 38.7%. The SSC4 gshare has a
cost of 0.25 hysteresis bits per counter, and thus has a 84.4% coding efficiency. Going to a SSC8
predictor would exceed the “channel capacity” of the hysteresis bits, and we would expect very high
misprediction rates. That is, eight hysteresis counters’ worth of information can not be encoded with
a single bit for any encoding1. We simulated SSC8 gshare predictors and found that such a high
degree of sharing results in so many mispredictions that the next smaller sized 2bC gshare predictor
is more accurate (see Figure 6).

From a practical point of view, it is still unclear whether a SSC gshare predictor provides a
better area-performance tradeoff than a traditional 2bC gshare. To answer this, we simulated 2bC
and SSC gshare predictors over a range of predictor sizes. Figure 6 shows the misprediction rates
of a traditional gshare predictor along with SSC2 and SSC4 gshare predictors.2

1. Assuming our entropy bounds are not more than 59.2% over the true value ofH(S(x)).
2. Figure 6 also includes the performance of a Bi-Mode predictor because the scale does not start at zero. We only

include the Bi-Mode predictor to provide a reference for making more meaningful comparisons between the 2bC and
SSC gshare predictors.
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Benchmark Misprediction Rate
(name.input) 2bC gshare SSC2 gshare SSC4 gshare

bzip2.graphic 0.0488 0.0500 0.0508
bzip2.program 0.0697 0.0719 0.0720
bzip2.source 0.0905 0.0939 0.0957
crafty 0.0783 0.0808 0.0852
eon.cook 0.0304 0.0318 0.0379
eon.kajiya 0.0723 0.0741 0.0764
eon.rushmeier 0.0478 0.0500 0.0556
gap 0.0536 0.0563 0.0594
gcc.166 0.0290 0.0301 0.0319
gcc.200 0.0625 0.0649 0.0685
gcc.expr 0.0465 0.0483 0.0511
gcc.integrate 0.0383 0.0398 0.0419
gcc.scilab 0.0628 0.0657 0.0698
gzip.graphic 0.0996 0.1005 0.1017
gzip.log 0.0748 0.0755 0.0763
gzip.program 0.1099 0.1108 0.1118
gzip.random 0.0807 0.0809 0.0814
gzip.source 0.0985 0.0992 0.1001
mcf 0.0844 0.0854 0.0875
parser 0.0607 0.0617 0.0637
perlbmk.makerand 0.0025 0.0039 0.0193
perlbmk.splitmail 0.0244 0.0261 0.0277
perlbmk.scrabble 0.0402 0.0444 0.0551
twolf 0.1398 0.1423 0.1451
vortex.1 0.0257 0.0281 0.0343
vortex.2 0.0260 0.0280 0.0347
vortex.3 0.0249 0.0270 0.0341
vpr.place 0.1399 0.1418 0.1444
vpr.route 0.0582 0.0584 0.0589
Average 0.0628 0.0645 0.0680

Relative Mispred. Increase +0.0% +2.8% +8.3%
SRAM Storage -0.0% -25.0% -37.5%

Table 4: The misprediction rates for the SPEC2000 benchmarks for 2bC and SSC versions of an
8K-entry gshare predictor. The relative increase in the misprediction rate and the decrease
in SRAM storage requirements are with respect to the 2bC gshare configuration.
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Benchmark Entropy (bits/prediction)
(name.input) 2bC gshare SSC2 gshare SSC4 gshare

bzip2.graphic 0.2138 0.2205 0.2280
bzip2.program 0.2480 0.2588 0.2682
bzip2.source 0.3062 0.3205 0.3350
crafty 0.3203 0.3516 0.3894
eon.cook 0.0156 0.0176 0.0189
eon.kajiya 0.2203 0.2430 0.2763
eon.rushmeier 0.0990 0.1059 0.1210
gap 0.0640 0.0742 0.0934
gcc.166 0.0701 0.0796 0.0917
gcc.200 0.2005 0.2238 0.2522
gcc.expr 0.1350 0.1516 0.1741
gcc.integrate 0.0677 0.0782 0.0921
gcc.scilab 0.1978 0.2218 0.2527
gzip.graphic 0.3193 0.3311 0.3553
gzip.log 0.2463 0.2568 0.2712
gzip.program 0.3417 0.3614 0.3774
gzip.random 0.2444 0.2477 0.2719
gzip.source 0.3336 0.3495 0.3627
mcf 0.2019 0.2112 0.2272
parser 0.1987 0.2085 0.2237
perlbmk.makerand 0.0068 0.0077 0.0080
perlbmk.splitmail 0.0838 0.0892 0.0988
perlbmk.scrabble 0.0206 0.0239 0.0322
twolf 0.4149 0.4544 0.5022
vortex.1 0.0269 0.0336 0.0442
vortex.2 0.0228 0.0288 0.0388
vortex.3 0.0271 0.0337 0.0443
vpr.place 0.4348 0.4655 0.4997
vpr.route 0.1630 0.1668 0.1709
Average 0.1809 0.1937 0.2111

Table 5: The upper bound on the hysteresis bit entropy as determined by compression of the hys-
teresis traces.
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Figure 6: The misprediction rates for 2bC and SSC gshare predictors. The Bi-Mode predictor per-
formance is provided for reference because the y-axis does not start at zero.

Although an 8K entry SSC gshare makes more mispredictions than a regular 2bC gshare, the
SSC predictors achieve superior performance per area. The dashed lines in Figure 6 connect con-
figurations with the same number of direction bits, but different amounts of hysteresis bits. A flatter
dashed line indicates that there is less accuracy degradation for the savings in area. For example,
the SSC2 versions of the 32KB, 64KB and 128KB gshare all suffer less than a 0.9% relative in-
crease in mispredictions (an increase in the absolute misprediction rate by 0.00041). Also note that
the x-axis is on a logarithmic scale, and so the area savings are greater than they might otherwise
appear. At lower hardware budgets, the effects of interference decrease the effectiveness of shared
split counters.

4.2.2 BI-MODE PREDICTORS

Many branch prediction algorithms use saturating two-bit counters. To demonstrate the applicability
of shared split counters, we present the performance results for a Bi-Mode predictor implemented
with shared split counters. The Bi-Mode predictor consists of two direction PHTs and a choice
PHT, all three of which use saturating two-bit counters, as shown in Figure 7. The exclusive-or ofb
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b bits

h bits

0
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0

PHT1

Branch Prediction

PHT
Choice

Figure 7: The Bi-Mode predictor has three separate PHTs, each of which may use shared split
counters.

branch address bits andh history bits index into the direction PHTs as in the gshare predictor. The
b branch address bits also index into the choice PHT.

As shown in Figure 6, the Bi-Mode predictor achieves superior performance per area when
compared to any of the SSC gshare configurations. Directly comparing the Bi-Mode predictor to
an SSC gshare predictor is not entirely fair because the two approaches address different issues
in the branch predictors (again, we only included the Bi-Mode in Figure 6 as a reference point).
The Bi-Mode predictor attacks the problem of PHT interference by splitting branches into a taken-
biased substream and a not-taken biased substream. On the other hand, the SSC gshare addresses
the fact that the hysteresis bits of the PHT are underutilized, and provides a means of trading a
little accuracy for space reduction. These issues are largely orthogonal and applying shared split
counters to a Bi-Mode predictor (or any other two-bit counter based predictor such as gskewed or
YAGS) should further improve the performance-versus-area curve.

We simulated several configurations of SSC Bi-Mode predictors and Figure 8 shows the results.
A SSC Bi-Mode configuration labeled as Bi-Mode(m,n) uses a 1:m reduction of hysteresis bits in
the choice PHT, and a 1:n reduction of hysteresis bits in both of the two direction PHTs. Similar to
the SSC gshare predictor, the shared split counters are not as effective at smaller hardware budgets.
We can view the 2bC Bi-Mode predictor (for configurations larger than 8KB) as a way to reduce the
SRAM requirements of a 2bC gshare predictor by 33% while maintaining approximately the same
misprediction rate. On the other hand, the SSC Bi-Mode(4,2) configuration provides a 29% space
reduction over the 2bC Bi-Mode, or a 47% reduction over the original 2bC gshare.
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5. Why Shared Split Counters Work

We have shown that the shared split counter gshare predictor provides a better performance-area
tradeoff than a traditional saturating two-bit counter gshare. In this section, we analyze the behavior
of the hysteresis bit in the SSC2 gshare predictor to explain why the sharing of state between coun-
ters does not greatly affect prediction accuracy. In particular, we illustrate how two pattern history
table entries sharing a single hysteresis bit can transition between states without interfering with its
neighboring entry, qualitatively describe the new sources of interference that shared split counters
may introduce, and then quantitatively measure the frequency of these situations and their impact
on overall prediction accuracy.

5.1 When SSC Works

Assume the processor executes the following piece of code, and the branches markedA andB map
to pattern history table entries that share a hysteresis bit.

i=0;
do
{

for (j=0; j<50; j++)
{

if ( i % 2 ) B
...

}
i++;

}
while (i<1000); A

For each iteration of the do-while loop, the inner branch markedB will alternate between always
not-taken and always taken. Figure 9 shows the state for the two neighboring pattern history table
entries that share a single hysteresis bit. In this example,A is initially predicted strongly taken while
B is initially predicted strongly not-taken. Now suppose that the program has just completed one
iteration of the while loop and is entering the next. For the next 50 instances, branchB will be
taken. The next prediction (prediction 1 in Figure 9) forB will not be correct, causing the shared
hysteresis bit to enter the weak state. Another misprediction (prediction 2) causes the direction bit
for B to change to taken. Finally, the prediction for branchB will be correct (prediction 3), causing
the shared hysteresis bit to return to a strong state. At this point, the state that branchA “sees” is the
same as before. Since branchA is not executed while branchB transitions from one strong state to
the other, it is not affected by the transition.

5.2 When SSC Introduces Interference

The sharing of hysteresis bits between counters can lead to situations where a branch affects the
state (and hence predictions) of an otherwise unrelated branch. In this section, we describe the
possible scenarios forsharing-inducedinterference.
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Figure 9: A counter can switch from not-taken to taken (or vice-versa) without interfering with the
counter that also shares the same hysteresis bit.

We categorize branch mispredictions into five possible categories. The list below briefly sum-
marizes the five cases, and a more detailed explanation follows.

1. Normal mispredictions occur when a branch direction changes and two mispredictions occur
before the predicted direction also changes. This corresponds to the normal behavior of a
saturating two-bit counter.

2. Transient mispredictions occur when the branch prediction does not change, but a single mis-
prediction is observed. Transient mispredictions normally occur in saturating two-bit coun-
ters.

3. Weak Hysteresismispredictions occur when a branch direction has changed, but only a single
misprediction is observed before the predicted direction also changes.

4. Dueling Counter mispredictions occur when a branch direction has changed, but the corre-
sponding counter experiences more than two mispredictions due to interference in the hys-
teresis bit.

5. Transient Dueling Counter mispredictions occur when a branch direction does not change,
but the corresponding counter experiences two or more mispredictions due to interference in
the hysteresis bit.

5.2.1 NORMAL M ISPREDICTIONS

Normal mispredictions correspond to the typical behavior of saturating two-bit counters. Figure 10
shows a series of branch outcomes corresponding to a single two-bit counter. When the branch
outcomes change from taken to not-taken, two mispredictions occur before the predicted direction
also changes. We classify these two mispredictions asnormal.

5.2.2 TRANSIENT M ISPREDICTIONS

Transient mispredictions also occur in conventional two-bit counters. Figure 11 shows a series of
branch outcomes corresponding to a loop termination branch. Typically the branch is taken, but
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Figure 10: Normal mispredictions occur when the branch direction changes and the counter expe-
riences exactly two mispredictions.
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Figure 11: A transient misprediction occurs when there is a single misprediction that does not
change the counter’s predicted direction.

there is a single instance when the loop is not-taken for the branch exit. This situation was the
original motivation for using two bits instead of a single bit. This single branch misprediction is
classified astransient.

5.2.3 WEAK HYSTERESISM ISPREDICTIONS

Multiple counters that share a single hysteresis bit may interfere with each other. This may lead
to situations where additional mispredictions occur that otherwise would not have if full saturating
two-bit counters were used. Note that while branchB (from the example of Section 5.1) is making
the transition from the strongly not-taken state to the strongly taken state, the state for branchA is
temporarily changed from strongly taken to weakly taken and then back. If branchA were to mis-
predict during this interval, the direction bit would immediately change to the not-taken direction.
In this situation, the shared hysteresis bit does not provide any hysteresis, allowing the direction bit
for branchA to change after only a single misprediction. We classify all mispredictions that cause
a change in the stored direction after exactly one misprediction asweak hysteresismispredictions.

5.2.4 DUELING COUNTER M ISPREDICTIONS

The next case for introducing interference when using a shared hysteresis bit is the case ofdueling
counters. Figure 12 illustrates the dueling counter scenario. The counterY is originally in a strong
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Figure 12: Two alternating predictions to entries sharing a confidence bit can result in one of the
entries not being able to switch its prediction bit.

state, but each timeY mispredicts, the hysteresis bit is set to zero. But if counterX makes a correct
prediction beforeY’s next prediction, then this returns the hysteresis bit to one, thus forcingY back
into a strong state when it would not be if the hysteresis bit was not shared.

A sequence of dueling counters can result in two possible outcomes. The first is that the correctly
predicted branch,X in Figure 12, stops interfering and allows the mispredicting branchY to change
its direction bit. These mispredictions are classified asdueling counter mispredictions. The second
possible outcome is that the behavior of branchY changes such that the branch no longer mispredicts
and the counter returns to a strong state. We classify these mispredictions astransient dueling
because they do not result in a change in the counter’s direction bit.

5.3 Classifying Mispredictions

Classifying mispredictions requires only tracking the number of consecutive mispredictions for each
counter, and whether the predicted direction changed on the next correct prediction. Table 6 shows
the method for classifying mispredictions. Normal mispredictions occur when the number of mis-
predictions is exactly two, and the direction changes. Weak hysteresis mispredictions occur when
the number of mispredictions is exactly one, and the direction changes. Dueling counter mispredic-
tions occur when the number of consecutive mispredictions is greater than two, and the direction
changes. Transient and transient dueling mispredictions cover all remaining cases where one or
more mispredictions occur, but the final direction is the same as before the first misprediction. From
Table 6, it is easy to see that any misprediction can be classified, and that the classification will be
unique.

5.4 Results

Table 7 lists the counts of each class of mispredictions for a few benchmarks and the average for
the 8K entry PHT configurations of a regular gshare, an SSC2-gshare and an SSC4-gshare. The
benchmarkgcc.166 represents a case that has approximately average behavior,gzip.random
is a case where shared split counters causes a very small relative increase in the branch misprediction
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Class Pattern Number of Branch Direction
Mispredictions Changed?

Normal 1 1 1 0 00 0 0 0 2 yes
0 0 0 1 11 1 1 1

Weak Hysteresis 1 1 1 0 0 0 0 0 0 1 yes
0 0 0 1 1 1 1 1 1

Dueling Counters 1 1 1 0 0 ... 00 0 ≥ 3 yes
0 0 0 1 1 ... 11 1

Transient 1 1 1 0 1 1 1 1 1 no
0 0 0 1 0 0 0 0

Transient Duel 1 1 1 0 ... 01 1 1 ≥ 2 no
0 0 0 1 ... 10 0 0

1 = Taken Branch
0 = Not-Taken Branch
Bold = misprediction

Table 6: The five possible cases in our misprediction classification scheme.

rate, andvortex.1 is a case that results in a larger relative increase in the branch misprediction
rate.

When measuring dueling mispredictions, we count the first two mispredictions as normal mis-
predictions, and only the third misprediction and beyond as dueling mispredictions. This is due to
the fact that with regular two bit counters, we would still observe two mispredictions before the
predicted branch direction changed. The average duel length (number of mispredictions per duel)
does not include the initial two mispredictions either. The reason for not including the initial two
mispredictions for the dueling counter statistics is to emphasize theadditional interference in the
direction bits that the sharing counters introduce. Similarly for transient dueling mispredictions, the
first misprediction is not counted toward the run length. The full misprediction classification results
for all benchmarks is located in Appendix A.

The results from Table 7 show that the amount of shared counter-induced interference is not
too large. The trends across all benchmarks are very similar. The additional interference due to the
shared split counters causes additional mispredictions due to dueling counter and transient dueling
mispredictions. This increase of sharing induced interference is partially offset by a reduction in
the number of weak hysteresis and normal mispredictions. The overall effect is that for the same
number of PHT entries, the shared split counters increase the branch misprediction rate slightly,
but makes up for it by reducing the overall storage requirements. Across benchmarks, the relative
increase in the misprediction rates is strongly correlated with the lengths of dueling counter runs.

6. Conclusions

We presented a different encoding of the traditional saturating two-bit counter where the least signif-
icant bit explicitly represents whether the current state is strong or weak, while the most significant
bit still represents the predicted branch direction. The separation of the hysteresis information al-
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gshare SSC2 SSC4
gcc.166
Normal 10784448 9952886 8846986
Transient 14064655 13927004 13714395
Weak 4123134 3817670 3484023
Dueling 0 628143 1389720
Avg. Duel Length - 2.445 2.748

Transient Dueling 0 1747995 4408238
Avg. Duel Length - 2.509 2.820

Mispred. Rate 0.0290 0.0301 0.0318
Entropy 0.0701 0.0796 0.0917

gzip.random
Normal 31151328 31067716 29499944
Transient 33955660 33948868 34160162
Weak 15555084 15453692 13480777
Dueling 0 83441 883483
Avg. Duel Length - 2.021 1.747

Transient Dueling 0 305790 3348454
Avg. Duel Length - 2.908 1.689

Mispred. Rate 0.0807 0.0809 0.0814
Entropy 0.2444 0.2477 0.2719

vortex.1
Normal 8202454 7981606 7417620
Transient 14103166 13971917 14291643
Weak 3411132 3252496 2187239
Dueling 0 562426 2401107
Avg. Duel Length - 5.738 12.419

Transient Dueling 0 2082799 7010855
Avg. Duel Length - 6.843 10.322

Mispred. Rate 0.0257 0.0281 0.0343
Entropy 0.0269 0.0336 0.0442

Average
Normal 22194123 21140291 19738131
Transient 26664639 26480527 26218850
Weak 9803559 9272519 8766624
Dueling 0 802374 1980424
Transient Dueling 0 2244268 5635727
Mispred. Rate 0.0628 0.0645 0.0680
Entropy 0.1809 0.1937 0.2111

Table 7: Misprediction classification statistics forgcc (approximately average case),gzip (small
amount of interference),vortex (large amount of interference) and the average over all
of the benchmarks.
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lows the counter to be separated into two distinct parts. Using information theoretical techniques,
we empirically show that the least significant bit of saturating 2-bit counters conveys less than 0.18
bits per prediction. We proposed sharing a single hysteresis bit between multiple counters, such
that separate bits are maintained for the predicted branch direction, although additional interference
may occur in the shared hysteresis bit. This achieves a cost of less than 2 bits per counter. Using
simulations, we show that replacing the 2-bit counters with shared split counters in the PHTs of
the gshare and Bi-Mode predictors rates provides comparable prediction rates at significantly lower
hardware costs.

The idea of using shared split counters can potentially be applied to other areas of branch predic-
tor design. For instance the meta-predictor used in the tournament hybrid branch predictor [7] which
consists of a table of saturating 2-bit counters is a candidate for using shared split counters, espe-
cially when combined with two sub-predictors that also employ shared split counters. The shared
split counters could replace traditional 2-bit counters in other areas of computer microarchitecture
design, for example in the classification table in data value prediction structures [18], or memory
instruction dependence status prediction [19].

Branches tend to be biased toward being taken more often than not-taken (our simulations show
that 60-70% of conditional branches are taken). This implies that the amount of information con-
veyed by the branch direction bit is also less than one bit per prediction. It may be possible to
use coding techniques to further reduce the storage requirements of branch predictors without ad-
versely affecting performance. Such an approach would probably require more complex hardware
to perform the encoding and decoding.
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Appendix A. Complete Misprediction Statistics

Table 7 in Section 5.4 presented the misprediction statistics for only a small number of benchmarks
and the average case. In the three tables below, Table 8, Table 9 and Table 10, we present the full
statistics for all of the benchmarks and all data sets simulated.
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