
Journal of Instruction-Level Parallelism 5 (2003) 1-24 Submitted 10/02; published 4/03

Managing Leakage Energy in Cache Hierarchies
�

Lin Li LILI@CSE.PSU.EDU

Ismail Kadayif KADAYIF@CSE.PSU.EDU

Yuh-Fang Tsai YTSAI@CSE.PSU.EDU

N. Vijaykrishnan VIJAY@CSE.PSU.EDU

Mahmut Kandemir KANDEMIR@CSE.PSU.EDU

Mary Jane Irwin MJI@CSE.PSU.EDU

Anand Sivasubramaniam ANAND@CSE.PSU.EDU

Microsystems Design Lab, Dept. of Computer Science and Engineering
Pennsylvania State University
220 Pond Lab, University Park, PA 16802 USA

Abstract
Energy management is important for a spectrum of systems ranging from high-performance

architectures to low-end mobile and embedded devices. With the increasing number of transis-
tors, smaller feature sizes, lower supply and threshold voltages, the focus on energy optimization
is shifting from dynamic to leakage energy. In fact, leakage energy is projected to become the
dominant portion of the chip power budget for 0.10 micron technology and below. Leakage energy
is of particular concern in dense cache memories that form a major portion of the transistor budget.
In this work, we present several architectural techniques that exploit the data duplication across the
different levels of cache hierarchy. Specifically, we employ both state-preserving (data-retaining)
and state-destroying leakage control mechanisms to L2 subblocks when their data also exist in L1.
Using a set of MediaBench and SPEC CINT2000 benchmarks, we demonstrate the effectiveness
of the proposed techniques through cycle-accurate simulation. We also compare our schemes with
the previously proposed cache decay policy. This comparison indicates that one of our schemes
generates competitive results with cache decay. Furthermore, we show how both techniques can be
applied in conjunction to provide additional energy gains.

1. Introduction

Leakage power of the chip is expected to increase by five times for each technology generation in
the future. This trend will result in leakage power becoming the dominant part of the chip power
budget for 0.10 micron technology and below [1]. While dynamic energy will still remain a concern
for components that are exercised and switched often, leakage energy is of particular concern in the
bulky memory structures. This is due to three reasons: increasing sub-threshold leakage current,
leakage energy increases with the effective number of transistors in the circuit, and a large transistor
budget is allocated for on-chip memories in current processors.

Many techniques have been proposed in the past to reduce cache energy consumption. Among
these are partitioning large caches into smaller structures to reduce the dynamic energy [2, 3] and
the use of a memory hierarchy that attempts to capture most accesses in the smallest size memory.
By accessing the tag and data array in series, Alpha 21164’s L2 cache [1] can access the selected

*. This work was supported in part by grants from GSRC, NSF Grants 0103583, 0082064 and CAREER Awards
0093082, 0093085.

1

LI, KADAYIF, TSAI, VIJAYKRISHNAN, KANDEMIR, IRWIN, & SIVASUBRAMANIAM

cache bank for energy efficiency. In [4, 5], way-prediction is used to reduce energy consumption of
set-associative caches. Selective cache ways [6] varies the number of ways for different application
requirements. In [7], a small filter cache is placed prior to L1 cache to reduce energy consump-
tion. Dynamic Zero Compression [8] employs single-bit access for zero-valued byte in the cache
to reduce energy consumption. However, most of these techniques do little to alleviate the leak-
age energy problem as the memory cells in all partitions and all levels of the hierarchy continue to
consume leakage power as long as the power supply is maintained to them, irrespective of whether
they are used or not. Various circuit technologies have been designed specifically to reduce leakage
power when the component is not in use. Some of these techniques focus on reducing leakage dur-
ing idle cycles of the component by turning off the supply voltage. One such scheme, gated-Vdd,
was integrated into the architecture of caches [9] to dynamically shutdown portions of the cache.
This technique was applied at a cache block granularity in [10] and used in conjunction with soft-
ware to remove dead objects in [11]. However, all these techniques assume that the state (contents)
of the supply-gated cache memory is lost. While totally eliminating the supply voltage results in the
state of the cache memory being lost, it is possible to apply a state-preserving leakage optimization
technique if a small supply voltage is maintained to the memory cell. There are many alternate im-
plementations that have been recently proposed at the circuit level to achieve such a state-preserving
leakage control mechanism [12, 13, 14]. As an abstraction of these techniques, the choice between
the state-preserving and state-destroying techniques depends on the relative overhead of the addi-
tional leakage required to maintain the state as opposed to the cost of restoring the lost state from
other levels of the memory hierarchy.

An important requirement to reduce leakage energy using either a state-preserving or a state-
destroying leakage control mechanism is the ability to identify unused resources (or data contained
in them). In [9], the cache size is reduced (or increased) dynamically to optimize the utility of the
cache. In [10], the cache block is supply-gated if it has not been accessed for a period of time. In
[15], hardware tracks the hypothetical miss rate and the real miss rate by keeping tag line active
when deactiving a cache line. And then the turn-off interval can be dynamically adjusted based
on such information. In [16, 17], dynamic supply voltage scaling is used to reduce the leakage
in the unused portions of the memory. In contrast to the other schemes, it also preserves data
when in low leakage mode. The usefulness and practicality of such state-preserving voltage scaling
schemes for embedded power-optimized memories is demonstrated in [18]. The focus in [19] is on
reducing bitline leakage power using leakage-biased bitlines. The technique turns off precharging
transistors of unused subbanks to reduce bitline leakage, and actual bitline precharging is delayed
until the subbank is accessed. In comparison to the prior efforts at optimizing memory leakage, in
this work, we focus on exploiting the data duplication present in an on-chip L1-L2 cache hierarchy
(which consists of an L1 instruction cache, an L1 data cache, and a unified L2 cache) to apply
the leakage control mechanisms. For example, in general, in an L1-L2 cache hierarchy, the data
present in L1 is also contained in L2, when destructive interference in L2 does not happen between
instruction and data. Our goal is to transition the cache subblock in L2 to a standby leakage mode
when its data is moved to L1. The goal is to save leakage energy by keeping only one active copy
of the data. Since the subblocks in L2 moved to L1 are the ones that are most recently used, the
cache decay mechanisms proposed previously do not immediately target these subblocks for leakage
optimization. Thus, the mechanism proposed in this paper can be applied in conjunction with other
existing leakage control mechanisms. Two-level exclusive cache schemes have also been proposed

2

MANAGING LEAKAGE ENERGY IN CACHE HIERARCHIES

for improving performance [20]. Our technique mimics exclusion by putting a duplicated copy to
sleep mode.

In this paper, we make the following contributions:

� Based on state-preserving and state-destroying leakage mechanisms, we describe five leakage
reduction strategies that exploit data duplication in the cache hierarchy. Using a set of Medi-
aBench and SPEC CINT2000 benchmarks, we demonstrate the effectiveness of the proposed
techniques through cycle-accurate simulation.

� We compare our schemes with cache decay policy, a finite state machine (FSM) based strat-
egy that turns off cache subblocks when they are idle for a sufficiently long period of time.
This comparison indicates that one of our schemes is competitive in terms of energy sav-
ings. Furthermore, we show how both techniques can be applied in conjunction to provide
additional energy gains.

The remainder of this paper is organized as follows. In the next section, we present technology
and circuit support for leakage energy optimization. In Section 3, we present five leakage energy
optimization strategies in detail. We compare and integrate these strategies with cache decay in
Section 4. In Section 5, we measure the sensitivity of leakage optimization techniques to different
parameters. Finally, in Section 6, we summarize our major contributions and give an outline of
planned future research on this topic.

2. Technology/Circuit Support for Leakage Control

As feature sizes of transistors continue to decrease, the supply voltage has to be scaled to keep cur-
rent densities in check providing quadratic dynamic energy savings. However, the increasing num-
ber of transistors and increased clock frequencies have aggravated the power consumption problem.
Another significant technology trend has been the corresponding decrease in threshold voltage,

���
,

along with the supply voltage. This trend is due to the fact that the switching speed of a transistor is
a function of the difference between the supply voltage and threshold voltage. From the leakage en-
ergy perspective, this trend is detrimental as leakage energy increases exponentially with a decrease
in threshold voltage.

Many circuit techniques have thus focused on limiting the device leakage. One such technique
is the use of high-

���
transistors on non-critical paths of the circuit [1]. This technique can help to

reduce leakage in these paths when they are used or idle. Another technique that can be employed
is to introduce a power-switch between the power supply and the leaking circuit. The PMOS switch
provides a virtual supply voltage to the leaking circuit. The switch is turned off when the circuit
is idle to cut off the supply voltage, eliminating leakage energy. The third technique is dynamic
scaling of the supply voltages of the circuit. Due to short-channel effects, the leakage current
reduces significantly when supply voltage reduces.

We select the dynamic scaling of the supply voltages as our leakage reduction technique. Whether
the data in memory cell is retained or not depends on the choice of the supply voltage. In normal
mode, the supply voltage of memory cell is 1.0V. In low leakage control mode, we use 0.3V supply
voltage for state-preserving mechanism and 0V supply voltage for state-destroying mechanism.

There are additional constraints imposed by the state-preserving leakage control. For the state-
preserving leakage control, it is also important to prevent memory cells that maintain their state
using a small voltage from losing state when connected with the bit lines. This can be avoided

3

LI, KADAYIF, TSAI, VIJAYKRISHNAN, KANDEMIR, IRWIN, & SIVASUBRAMANIAM

Standby
Bit

Cache Line��

��

Set Reset

1 V

Word line

Word line gate

Power Line

Word line

0V / 0.3V

R
ow

 D
ecoder

Figure 1: Leakage control circuitry. Note that the 0V or 0.3V determined at the design time
based on whether we require state-destroying or state-preserving mode.

by ensuring that the wordline signal that controls the connection between the memory cell and the
bitlines is suppressed until the memory cells of a cache line in state-preserving leakage control
mode recover to a normal supply voltage. This logic can easily be incorporated in the row decoders.
A final consideration in the state-preserving mode is that the circuit operating at a lower supply
voltage is more susceptible to bit flipping due to soft errors from alpha particle strikes [21]. These
soft errors for memories are presently addressed using additional error correction bits. However, as
the possibility of such errors increases with reduction in voltage, a more detailed analysis is required
to accurately account for its effect. There are interesting tradeoffs offered by the amount of leakage
energy that can be saved and the internal node voltage levels (that in turn influence susceptibility to
errors). These tradeoffs are planned as a part of our future work.

We use a similar circuit to that proposed in [16] except for the change in supply voltage for state-
preserving and state-destroying. In our implementations, for each cache line, a standby bit is added
to control the selection of voltage supply of the cell as shown in Figure 1. For both state-preserving
and state-destroying, we turn on the standby bit of cache blocks during low leakage control mode
and turn it off when the cache subblock needs to be accessed and return to the normal mode. The
logic for setting and resetting the standby bit can be incorporated in the cache refill logic of the
controller. The conditions for setting and resetting are dependent on the optimization strategy and
are explained in the next section. In this work, we assume 10% of original leakage in the state-
preserving mode. For the state-destroying mode, on the other hand, we assume no leakage energy
consumption. These assumption are based on trends obtained from HSPICE circuit simulation
(using Berkeley predictive model [22]). We used a 1.0V, 0.07 micron technology with a normal
�����

/
���	�

of 200mV/-220mV and a high
�
���

/
���	�

of 400mV/-420mV. Simulation were done using a
temperature of 85 degrees C. There is an additional area penalty associated with the leakage control
circuitry. Our estimates indicate that the power switch, word line gating logic, and the standby
control increase the area of the cache by 3%. This can potentially increase the length of the wires
and have a small impact on the dynamic energy. We also experiment by varying the leakage energy
saving parameter in Section 5 to accommodate anticipated variations due to operating condition and
circuit parameter variations.

There is additional dynamic energy consumed in switching these transistors that is reflected as
control energy (also called control overhead) in our experiments. Further, cache line in low leakage
control mode must be switched to normal mode (voltage settling to normal 1V) before access is

4

MANAGING LEAKAGE ENERGY IN CACHE HIERARCHIES

permitted. This can be achieved by using the wordline trigger to reset the standby bit in 1 clock
cycle. The voltage settling time of 1 cycle is a key difference from the circuit we used in [23],
that had a larger penalty. The switching times for both the circuits were validated through HSPICE
circuit simulation.

If a cache block is not accessed after being placed into low-power mode (using a state-preserving
or state-destroying strategy), we can expect that the state-destroying mode would save more leakage
energy than the state-preserving mode as the latter still consumes 10% of the original leakage energy
in the standby state. (A more detailed evaluation of relationship between supply voltage scaling and
leakage reduction in our employed circuit can be obtained from [24].) However, if, after being put
into the low-power mode, the cache block is accessed (either due to the reference residing there or
due to some other reference), the state-destroying mode pays a high performance and energy penalty
(as the data needs to be accessed from memory). In contrast, under the same scenario, a cache
block in the state-preserving state only needs to be reactivated. Therefore, whether state-preserving
mode performs better than state-destroying mode depends largely on the duration of idleness for the
cache block in question. This is, obviously, a characteristic of application access pattern and cache
hierarchy configuration. In our experiments, all cache lines are in the leakage-control mode before
their first use for all strategies.

3. Leakage Optimization Strategies and Results

In this section, we present a set of strategies that exploit the state-preserving and state-destroying
leakage energy optimization mechanisms and present energy and energy-delay numbers. As ex-
plained below, these strategies differ from each other with respect to the circuit type that they em-
ploy (state-destroying versus state-preserving), whether they conservatively or speculatively turn
off L2 subblocks, and the time that the L2 subblocks are reactivated (powered-on). All strategies
power-manage portions of L2 blocks at the subblock granularity. A subblock of L2 is the same size
as a block of L1 and is the unit of transfer between L1 and L2.

3.1 Optimization Strategies
� Conservative: In this strategy, when a block in L1 is written to, the corresponding

subblock in L2 is turned off by setting the standby bit, thereby destroying data and saving
leakage in L2. This is a conservative strategy as, before turning off the subblock in L2, it
waits until the corresponding block in L1 becomes dirty. Note that this strategy deactivates
only dead L2 blocks (as they are written in L1) and this characteristic makes it different from
the remaining strategies considered in this paper. It should also be noted that this strategy
cannot optimize instruction accesses as instructions are not written.

� S-SP-Lazy (Speculative, State-Preserving, and Lazy): In this strat-
egy, when data is brought from L2 to L1, the corresponding L2 subblock is put in a state-
preserving leakage control mode. Consequently, as compared to the conservative strategy
described above, this strategy has two important differences: it does not wait for the cache
block in L1 to become dirty (i.e., it speculatively turns off the L2 subblock) and it does not
lose data in L2. If the block in L1 is evicted, no action is performed if the L1 block is not
dirty and the corresponding L2 subblock remains in state-preserving leakage control mode.
Therefore, number of L2 subblocks in sleep mode can be larger than the number of L1 blocks.
However, as in other strategies, if the evicted L1 block is dirty, the corresponding L2 subblock

5

LI, KADAYIF, TSAI, VIJAYKRISHNAN, KANDEMIR, IRWIN, & SIVASUBRAMANIAM

Strategy When is L2 subblock Energy-saving When is L2
turned off? mechanism in L2 subblock reactivated?

Conservative when L1 block becomes dirty state-destroying when accessed
S-SP-Lazy when L2 subblock is moved to L1 state-preserving when accessed
S-SD-Lazy when L2 subblock is moved to L1 state-destroying when accessed
S-SP-Immed when L2 subblock is moved to L1 state-preserving when L1 block is evicted
S-SD-Immed when L2 subblock is moved to L1 state-destroying when L1 block is evicted

Table 1: Proposed leakage energy saving strategies.

L1
eviction L2 access

Reactivate

AccessReactivate

Access

L2 to L1
transfer

L2 subblock OFF

L2 subblock OFF

S-SP-Lazy

S-SP-Immed

Figure 2: Comparison of S-SP-Lazy and S-SP-Immed.

is reactivated and written into. Since a write buffer is employed, the performance penalty of
the reactivation period can usually be masked.

� S-SD-Lazy (Speculative, State-Destroying, and Lazy): This strategy
is similar to S-SP-Lazy, the difference being that the subblock in L2 is put in the state-
destroying mode. So, as long as the subblock in L2 is in the powered off state, this strategy
saves more leakage energy than S-SP-Lazy (which uses the state-preserving mode). On the
other hand, when the L2 subblock needs to be accessed, this strategy pays a higher price than
S-SP-Lazy as it needs to access the off-chip memory (as opposed to S-SP-Lazy which simply
reactivates the L2 subblock).

� S-SP-Immed (Speculative, State-Preserving, and Immediate): This
is also similar to S-SP-Lazy except that the L2 subblock is reactivated whenever the corre-
sponding L1 cache block needs to be replaced. This early reactivation (as compared to S-
SP-Lazy where reactivation occurs only when the L2 block is accessed) can reduce energy
savings compared to S-SP-Lazy. However, it has better performance behavior, as when the L2
cache block is accessed, a separate reactivation time is not spent. This situation is depicted in
Figure 2. In the S-SP-Lazy case, the cache subblock is in the state-preserving leakage control
mode between the time it is moved to L1 and the time that the L2 is accessed, whereas in
S-SP-Immed, it is reactivated when the L1 eviction occurs. Consequently, in S-SP-Immed,
the L2 subblock reactivation time can be hidden.

� S-SD-Immed (Speculative, State-Destroying, and Immediate): This
strategy is similar to S-SD-Lazy except that the L2 subblock is reactivated and written back
whenever the corresponding L1 cache block needs to be replaced. Its relative merits with re-
spect to S-SD-Lazy are similar to those of S-SP-Immed with respect to S-SP-Lazy. Similarly,
its advantages/disadvantages compared to S-SP-Immed are similar to those of S-SD-Lazy
compared to S-SP-Lazy.

6

MANAGING LEAKAGE ENERGY IN CACHE HIERARCHIES

Simulation Parameter Value
Processor Core

Functional Units 4 integer and 4 FP ALUs
1 integer multiplier/divider

1 FP multiplier/divider
LSQ Size 32 Instructions
RUU Size 64 Instructions
Fetch Width 4 instructions/cycle
Decode Width 4 instructions/cycle
Issue Width 4 instructions/cycle
Commit Width 4 instructions/cycle
Fetch Queue Size 4 instructions
Cycle Time 0.5ns

Cache & Memory Hierarchy
L1 Instruction Cache 32KB, 32 byte blocks,

2-way, 1 cycle latency
L1 Data Cache 32KB, 32 byte blocks,

2-way, 1 cycle latency
L2 Cache 1MB unified, 2-way,

128 byte blocks,
10 cycle latency

Data TLB 128 entries, full-associative,
30 cycle miss latency

Instruction TLB 64 entries, full-associative,
30 cycle miss latency

Memory 100 cycle latency
Energy Management

Technology 0.07 micron
Supply Voltage 1.0V
Voltage Supply Settling Time 1 cycle
Dynamic Energy per L1 Access 0.565nJ
Dynamic Energy per L2 Access 5.83nJ
Leakage Energy per L1 Block
per Active Cycle 0.551pJ
Leakage Energy per L2 Subblock
per Standby Cycle (state-preserving) 0.055pJ
Leakage Energy per L2 Subblock
per Standby Cycle (state-destroying) 0pJ
Control Energy 0.055nJ

Table 2: Our base configuration.

Table 1 summarizes these four strategies highlighting their differences. It should be noted,
however, that when an evicted L1 cache block is dirty, the corresponding L2 subblock needs to be
reactivated (by resetting the standby bit) irrespective of the energy-saving strategy used. Therefore,
this case is not listed separately under the last column in Table 1. It also needs to be mentioned that
in state-destroying modes with set-associative caches, when all subblocks in a given L2 block are
moved to L1, this L2 block is invalidated, becoming a suitable candidate for the next cache block
replacement in L2. However, if there is a single valid subblock in the block, the block is considered
valid and participates in the LRU replacement process.

7

LI, KADAYIF, TSAI, VIJAYKRISHNAN, KANDEMIR, IRWIN, & SIVASUBRAMANIAM

Benchmark Input Execution Cache Energy L2
Cycles Leakage

(millions) Leakage (mJ) Dynamic (mJ)
adpcm-rawcaudio clinton.pcm 4.74 1.88 (17.46%) 8.90 (82.54%) 57.28%
adpcm-rawdaudio clinton.adpcm 4.00 1.54 (18.37%) 6.85 (81.63%) 56.41%

cjpeg testimg.ppm 7.69 54.25 (72.97%) 20.09 (27.03%) 77.76%
djpeg testimg.jpg 2.93 13.61 (71.22%) 5.49 (28.78%) 68.77%
epic test image.pgm 21.33 352.65 (85.62%) 59.20 (14.38%) 90.53%

unepic test.image.pgm.E 5.53 75.31 (88.29%) 9.98 (11.71%) 88.88%
g721-decode clinton.g721 119.09 338.40 (50.47%) 332.10 (49.53%) 55.14%
g721-encode clinton.pcm 123.98 353.54 (50.85%) 341.75 (49.15%) 55.30%
mesa-mipmap - 37.09 1032.67 (92.75%) 80.75 (7.25%) 94.02%
mesa-osdemo - 11.97 315.95 (91.48%) 29.40 (8.52%) 93.77%
mpeg2-decode mei16v2.m2v 65.36 638.12 (75.62%) 205.71 (24.38%) 84.30%

gzip input.source 105.19 2299.63 (89.26%) 276.60 (10.74%) 93.73%
vpr net.in arch.in place.in 160.84 4248.19 (93.62%) 289.69 (6.38%) 93.89%
gcc scilab.i 220.77 5464.22 (93.84%) 358.96 (6.16%) 93.24%
mcf inp.in 171.50 4861.76 (93.68%) 327.75 (6.32%) 94.80%

perlbmk 2.1.dict -batch ref.in 133.28 3507.31 (92.68%) 276.95 (7.32%) 93.98%
vortex bendian1.raw 325.33 7760.05 (95.39%) 375.26 (4.61%) 92.97%
bzip2 input.source 779.39 21882.9 (98.65%) 299.60 (1.35%) 95.46%
twolf ref 448.16 12462.3 (97.13%) 367.63 (2.87%) 94.50%

Table 3: Benchmarks used in our experiments and their important characteristics.

3.2 Simulation Parameters and Benchmarks

We used Simplescalar 3.0 [25] to implement our energy-saving optimization strategies. Simplescalar
is a tool-set to simulate application programs on a range of modern processors and systems using
fast execution-driven simulation. It provides a detailed simulator for an out-of-order issue processor
that supports non-blocking caches, speculative execution, and state-of-the-art branch prediction. In
this work, we used the sim-outorder component. Table 2 gives the simulation parameters used for
our base configuration.

We used the 70nm technology and energy models from CACTI 3.0 to get the dynamic energies
of accessing L1 and L2 caches. We assume that the leakage energy per cycle of the entire L1 cache
is equal to the dynamic energy consumed per access. Further, we assume that the leakage of the
L2 subblock is equal to that of the L1 block. We evaluated the effectiveness of these strategies
using a set of benchmark programs. Our benchmarks are codes from MediaBench suite [26] and
SPEC CINT2000 [27] benchmarks. We selected these two groups of codes as they represent dif-
ferent access patterns. For each code in MediaBench suite, the simulations are run to completion.
Except bzip2 and mcf, benchmarks in SPEC CINT2000 suits are first fast forwarded 300 million
instructions and then simulated 200 million instructions. No instruction is fast forwarded for bzip2
and mcf due to their specific characteristics [28]. The important characteristics of these benchmarks
are listed in Table 3. The fourth and fifth columns in this figure give the total leakage and dynamic
energy consumptions, respectively, in L1-L2 cache hierarchy assuming all blocks are powered off
until their first use and never turned off after that. The last column, on the other hand, gives the
percentage contribution of the L2 cache to overall leakage energy consumption in the cache hierar-
chy. It can be observed that these codes expend a large percentage of leakage energy (77.3% of the
cache hierarchy energy on the average) and expend a large fraction of this leakage energy (82.9%
on the average �) in L2 due to its much larger capacity. Consequently, we can expect large leakage
energy savings using our strategies. Note that percentage of dynamic energy is dependent on the

1. This is when no leakage optimization is applied

8

MANAGING LEAKAGE ENERGY IN CACHE HIERARCHIES

adpcm− adpcm− cjpeg djpeg epic unepic g721− g721− mesa− mesa− mpeg2−
0

20

40

60

80

100

120

140

No
rm

ali
ze

d
Fr

ac
tio

n
of

 L
2

su
bb

loc
ks

 (%
)

rawcaudiorawdaudio decode encode mipmap osdemo decode

Co
ns

er
va

tiv
e

S−
SP

−L
az

y
S−

SD
−L

az
y

S−
SP

−I
m

m
ed

S−
SD

−I
m

m
ed

257.83
167.72

145.78 264.95
153.90

168.57 279.52
168.03

194.90

Active
State−preserving
State−destroying

Figure 3: Normalized fraction of subblocks in L2 in different states. (MediaBench)

gzip vpr gcc mcf perlbmk vortex bzip2 twolf
0

20

40

60

80

100

120

140

No
rm

ali
ze

d
Fr

ac
tio

n
of

 L
2

su
bb

loc
ks

 (%
)

Co
ns

er
va

tiv
e

S−
SP

−L
az

y
S−

SD
−L

az
y

S−
SP

−I
m

m
ed

S−
SD

−I
m

m
ed

141.32
279.33

158.59
435.95

214.14
1980.5

619.09
2039.1

350.45
2318.6

745.34
773.45

314.81

Active
State−preserving
State−destroying

Figure 4: Normalized fraction of subblocks in L2 in different states. (SPEC CINT2000)

size of the memory and the number and duration between memory accesses. Most of the energy
results given in following subsections are results normalized with respect to the values in the fourth
and fifth columns of Table 3.

3.3 Impact of Our Strategies

Figure 3 and Figure 4 show the fraction of subblocks in L2 in active, state-destroying, and state-
preserving states. Each portion of the bar is the sum of the number of L2 subblocks in active, state-
preserving, or state-destroying states (excluding those that were never used in the entire execution)
over each clock cycle normalized to the sum of active L2 subblocks over each clock cycle in the
original execution. In Conservative, S-SD-Lazy, and S-SD-Immed, subblocks in L2 are distributed
between active and state-destroying states. In S-SP-Lazy and S-SP-Immed, subblocks in L2 are
distributed between active and state-preserving states. The reason that some bars exceed 100%

9

LI, KADAYIF, TSAI, VIJAYKRISHNAN, KANDEMIR, IRWIN, & SIVASUBRAMANIAM

adpcm− adpcm− cjpeg djpeg epic unepic g721− g721− mesa− mesa− mpeg2−
0

20

40

60

80

100

120
No

rm
al

ize
d

En
er

gy
 C

on
su

m
pt

io
n

(%
)

rawcaudio rawdaudio decode encode mipmap osdemo decode

Co
ns

er
va

tiv
e

S−
SP

−L
az

y
S−

SD
−L

az
y

S−
SP

−I
m

m
ed

S−
SD

−I
m

m
ed

130.64 131.45 132.88 241.14
139.84

Leakage
Dynamic
Control

Figure 5: Normalized energy consumption of our optimization strategies. (MediaBench)

gzip vpr gcc mcf perlbmk vortex bzip2 twolf
0

20

40

60

80

100

120

No
rm

al
ize

d
En

er
gy

 C
on

su
m

pt
io

n
(%

)

Co
ns

er
va

tiv
e

S−
SP

−L
az

y
S−

SD
−L

az
y

S−
SP

−I
m

m
ed

S−
SD

−I
m

m
ed

128.47
294.32

145.60
1110.2

431.82
1792.0

193.75
1753.6

579.92
551.48

275.85

Leakage
Dynamic
Control

Figure 6: Normalized energy consumption of our optimization strategies. (SPEC CINT2000)

is due to the fact that some schemes impact performance and the execution times of benchmarks
in such schemes are longer than those in the original execution. Therefore, the total number of
subblocks over each clock cycle is larger than 100% after normalization. We can observe that a
large fraction of subblocks is in state-preserving and state-destroying states for most benchmarks.

Figure 5 and Figure 6 show the normalized energy consumption for our five optimization strate-
gies. Each bar in this figure is divided into three parts: leakage energy, dynamic energy, and control
overhead (energy) and is normalized to the total energy consumed by original execution of bench-
marks, which is the sum of the fourth and fifth columns of Table 3. We report dynamic energy
because our leakage optimization strategies may increase dynamic energy consumption. We can
make the following observations from these results. First, the control overhead is nearly negligible.
This is because, compared to the total number of cache accesses, the number of state transitions is
very low. In fact, we observe control energy overhead only in the Conservative strategy. This makes

10

MANAGING LEAKAGE ENERGY IN CACHE HIERARCHIES

sense as in this strategy the control overhead is directly proportional to the number of L1 writes.
Second, among our five strategies, S-SP-Lazy generates the best energy results. It reduces leakage
energy consumption by 37.7% on the average across all benchmarks and overall cache energy (in-
cluding dynamic energy and control overhead as well) by 28.5% on the average. On the other hand,
the average leakage (the average overall energy) improvements due to Conservative, S-SD-Lazy,
S-SP-Immed, and S-SD-Immed are 5.9% (3.0%), -281.0% (-269.4%), 14.6% (7.7%), and -48.1%
(-52.1%), respectively. (A negative value indicates an increase in energy consumption).

We now explain why these different strategies performed the way they did. Comparing S-SP-
Lazy and S-SD-Lazy, recall that neither of them reactivates L2 subblock when the corresponding
L1 block is evicted. If a clean block in L1 is evicted, the corresponding subblock in L2 is in the
state-preserving state for S-SP-Lazy but is in the state-destroying state for S-SD-Lazy. Then, when
the next access occurs, S-SP-Lazy will incur 1 cycle delay (for reactivation), whereas S-SD-Lazy
will lead to 100 cycle penalty (for memory access). During this long memory access all active L1
and L2 blocks leak. Consequently, in most of our codes, S-SP-Lazy exhibits a better energy behav-
ior than S-SD-Lazy. There are, however, exceptions to this general trend: adpcm-rawcaudio,
adpcm-rawdaudio, g721-decode, and g721-encode. In these codes, the L1 replacement
rate (the ratio between the number of L1 replacements and total L1 accesses) is very low (around
0.0003%) and L2 subblocks stay in energy-saving state longer (which works in favor of S-SD-Lazy).

We now focus on S-SP-Immed and S-SD-Immed. Recall that these two schemes differ from
S-SP-Lazy and S-SD-Lazy in that they reactivate the L2 subblock when the corresponding L1 sub-
block is evicted. When data is moved from L2 to L1, S-SP-Immed places the corresponding sub-
block into the state-preserving state, whereas S-SD-Immed puts it in the state-destroying mode. So,
as far as a single subblock is concerned, S-SD-Immed seems to be more energy-efficient. However,
if all subblocks in a given L2 block are moved into L1, S-SD-Immed invalidates the entire L2 cache
block (i.e., makes it available for replacement). After that, when a new access is made to this cache
block, a miss is incurred and main memory needs to be accessed (a 100 cycle delay). During this
memory access all active cache blocks in L1 and L2 consume leakage energy. Although the early
reactivation (i.e., reactivation in L1 block eviction time) tries to write data back from the L1 cache
to the L2 cache, this operation succeeds only when the cache block is in the valid state (i.e., there
exists at least a single valid L2 subblock in the cache block). In our scenario, the early reactivation
succeeds in S-SP-Immed but fails in S-SD-Immed. Consequently, in such cases, S-SP-Immed might
perform better than S-SD-Immed. The results in Figure 5 and Figure 6 indicate that in eight bench-
marks S-SP-Immed consumes less energy than S-SD-Immed (due to frequent memory accesses).
In the remaining codes, S-SD-Immed performs better than S-SP-Immed (due to lack of the above
mentioned scenario).

When we compare S-SP-Lazy and S-SP-Immed, we see that both of them preserve the data
in L2, but S-SP-Immed reactivates the subblock in L2 when the corresponding block is evicted
from L1. Therefore, it tends to maintain the same execution time as the original (unoptimized)
case, incurring some extra energy due to early reactivation. Therefore, its energy behavior is worse
than S-SP-Lazy. However, its performance is better than S-SP-Lazy in almost all cases. Finally,
comparing S-SD-Lazy and S-SD-Immed, we observe that although both of them destroy data in L2,
S-SD-Immed has a better chance for avoiding main memory access, thanks to the early reactivation.
In most of the benchmarks, S-SD-Immed consumes less energy than S-SD-Lazy.

Energy consumed in the cache system is only a part of this picture. To perform a fair compari-
son between the different energy optimization strategies, we also need to account for the additional

11

LI, KADAYIF, TSAI, VIJAYKRISHNAN, KANDEMIR, IRWIN, & SIVASUBRAMANIAM

adpcm− adpcm− cjpeg djpeg epic unepic g721− g721− mesa− mesa− mpeg2−
0

20

40

60

80

100

120

N
or

m
al

iz
ed

 E
ne

rg
y−

D
el

ay
 P

ro
du

ct
s

(%
)

rawcaudio rawdaudio decode encode mipmap osdemo decode

C
on

se
rv

at
iv

e
S−

SP
−L

az
y

S−
SD

−L
az

y
S−

SP
−I

m
m

ed
S−

SD
−I

m
m

ed

414.95
192.99

149.54 443.22
159.71

177.59 221.35 131.26 704.25
248.32

258.50

Figure 7: Normalized energy-delay products of our optimization strategies. (MediaBench)

gzip vpr gcc mcf perlbmk vortex bzip2 twolf
0

20

40

60

80

100

120

N
or

m
al

iz
ed

 E
ne

rg
y−

D
el

ay
 P

ro
du

ct
s

(%
)

C
on

se
rv

at
iv

e
S−

SP
−L

az
y

S−
SD

−L
az

y
S−

SP
−I

m
m

ed
S−

SD
−I

m
m

ed

186.58
443.20

149.98
1459.9

353.82
26931.

3005.9
37972.

835.10
44460.

4680.1
4770.0

904.46

Figure 8: Normalized energy-delay products of our optimization strategies. (SPEC
CINT2000)

12

MANAGING LEAKAGE ENERGY IN CACHE HIERARCHIES

−60

−40

−20

0

20

40

60

80

100

A
ve

ra
ge

 S
av

in
gs

 (
%

)

C
on

se
rv

at
iv

e

S
−S

P
−L

az
y

S
−S

D
−L

az
y

S
−S

P
−I

m
m

ed

S
−S

D
−I

m
m

ed

D
ec

ay
−S

D

D
ec

ay
−S

P

C
om

bi
ne

−I

C
om

bi
ne

−I
I

−280.98 −6152.07
 −269.41

 −509.30 −62.81

Leakage
Total Cache Energy
Energy−Delay

Figure 9: Average savings (over all benchmarks) for different optimization strategies.

execution cycles and the additional leakage expended in the other parts of the processor during these
additional cycles. We assume conservatively that the contribution of the rest of the processor (other
than the cache subsystem) to the leakage energy is 30% in our calculations. The energy-delay prod-
uct is a suitable metric that allows to evaluate the impact of an optimization on both the performance
and energy. The results given in Figure 7 and Figure 8 are the normalized energy-delay products
(with respect to the original cache management without any leakage energy control). It is easy
to see that S-SD-Lazy and S-SD-Immed do not perform well due to frequent main memory visits
resulting from L2 misses. We observe, however, that the S-SP-Lazy strategy reduces the energy-
delay product by 20.4%, on the average. Apart from S-SP-Lazy, only S-SP-Immed improves the
energy delay product (6.0% on the average). State-destroying optimization strategies, on the other
hand, increase energy-delay product by 5.3% (Conservative), 6152.1% (S-SD-Lazy), and 509.3%
(S-SD-Immed). Based on these results, we can conclude that working with a state-preserving mode
is extremely important to improve both energy and the energy-delay product. The first five groups
of bars in Figure 9 show the average values (percentage improvements) for our five optimizations
across all benchmark programs for leakage energy, overall cache energy, and energy-delay product.
The last four groups of bars are discussed in the next section.

4. Comparison and Integration with Other Strategies

In [10], Kaxiras et al. present a leakage energy reduction technique for cache memories. This tech-
nique, called cache decay, is based on the idea that a cache block that is not used for a sufficiently
long period of time can be considered dead. More specifically, with each cache block, they associate
a small 4-state FSM (finite state machine). The FSM steps through these states as long as the cache
block is not accessed. When the last state is reached, the cache block is turned off.

To compare this technique with our approach, we implemented cache decay in SimpleScalar
[25] and performed experiments. The first implementation (called Decay-SD) is a straightforward
extension of their approach to a cache hierarchy (instead of just the L1 cache). Specifically, we
applied the cache decay method to both L1 and L2 using the state-destroying leakage saving tech-
nology. Then, we further enhanced this scheme by employing the state-preserving strategy in both
L1 and L2. In this second implementation (called Decay-SP), the L2 cache is energy-managed

13

LI, KADAYIF, TSAI, VIJAYKRISHNAN, KANDEMIR, IRWIN, & SIVASUBRAMANIAM

adpcm− adpcm− cjpeg djpeg epic unepic g721− g721− mesa− mesa− mpeg2−
0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

rawcaudio rawdaudio decode encode mipmap osdemo decode

D
ec

ay
−S

D
D

ec
ay

−S
P

C
om

bi
ne

−I
C

om
bi

ne
−I

I

Leakage
Dynamic
Control

Figure 10: Normalized energy consumption of cache decay and combined strategies. (Media-
Bench)

gzip vpr gcc mcf perlbmk vortex bzip2 twolf
0

10

20

30

40

50

60

70

80

90

100

N
o
rm

a
liz

e
d
 E

n
e
rg

y
C

o
n
su

m
p
tio

n
 (

%
)

D
e

ca
y−

S
D

D
e

ca
y−

S
P

C
o

m
b

in
e

−
I

C
o

m
b

in
e

−
II

Leakage
Dynamic
Control

Figure 11: Normalized energy consumption of cache decay and combined strategies. (SPEC
CINT2000)

at the subblock granularity and the FSM is used to transition L2 subblocks into a state-preserving
mode (as opposed to the state-destroying mode in Decay-SD). In both of these implementations, we
used the threshold values used in [10] (i.e., 10K cycles for L1 and 1M cycles for L2).

In addition to these two strategies, we implemented two strategies that combine the cache decay
scheme with our optimization strategy. Combine-I corresponds to a strategy where L1 leakage
energy is optimized using cache decay method, whereas the L2 cache energy is optimized using our
S-SP-Lazy strategy. Finally, Combine-II employs cache decay for L1, but uses both cache decay
(as in Decay-SP) and our S-SP-Lazy strategy for L2. In both Combine-I and Combine-II,

14

MANAGING LEAKAGE ENERGY IN CACHE HIERARCHIES

adpcm− adpcm− cjpeg djpeg epic unepic g721− g721− mesa− mesa− mpeg2−
0

20

40

60

80

100

120

N
or

m
al

iz
ed

 E
ne

rg
y−

D
el

ay
 P

ro
du

ct
s

(%
)

rawcaudio rawdaudio decode encode mipmap osdemo decode

D
ec

ay
−S

D
D

ec
ay

−S
P

C
om

bi
ne

−I
C

om
bi

ne
−I

I

302.61 191.59 401.68 145.47

Figure 12: Normalized energy-delay products of cache decay and combined strategies. (Me-
diaBench)

gzip vpr gcc mcf perlbmk vortex bzip2 twolf
0

20

40

60

80

100

120

N
or

m
al

iz
ed

 E
ne

rg
y−

D
el

ay
 P

ro
du

ct
s

(%
)

D
ec

ay
−S

D
D

ec
ay

−S
P

C
om

bi
ne

−I

C
om

bi
ne

−I
I

172.02 130.33 234.18 215.29 569.19

Figure 13: Normalized energy-delay products of cache decay and combined strategies. (SPEC
CINT2000)

state-preserving mechanism is employed in L1 and L2. The reason that we used S-SP-Lazy in these
last two versions (instead of other speculative strategies) is that it performs better than others as
shown through our experimental results discussed earlier.

Figures 10 and Figures 11 show the normalized energy consumptions. Figures 12 and Figures 13
show the normalized energy-delay products, respectively, for these last four strategies mentioned
above. It can be observed that Decay-SD performs quite well and improves leakage energy con-
sumption and overall cache energy by 63.6% and 49.7%, on the average. However, it increases ex-
ecution cycles as, under this optimization scheme, it is possible that a cache block can be destroyed

15

LI, KADAYIF, TSAI, VIJAYKRISHNAN, KANDEMIR, IRWIN, & SIVASUBRAMANIAM

in L1 as well as in L2. Consequently, it incurs frequent main memory accesses, thus degrading the
energy-delay product by 62.8%. In most cases, Decay-SP improves over Decay-SD in both energy
and energy-delay product. It improves leakage energy, total cache energy, and energy-delay prod-
uct by 69.5%, 54.3%, and 39.3%, respectively. This is because in Decay-SP, both L1 and L2 cache
management do not destroy data, thereby preventing frequent main memory accesses. Also, as com-
pared to Decay-SD, it manages L2 leakage energy in subblock granularity. Recall that S-SP-Lazy’s
leakage energy, total cache energy, and energy-delay product improvements were 37.6%, 28.5%,
and 20.4%, respectively. While Decay-SD provide a better energy reduction over S-SP-Lazy, it suf-
fers from long execution times. Decay-SP, however, performs better than S-SP-Lazy in all aspects.
It should also be stressed that while S-SP-Lazy targets only the lines in L2 cache that are moved
into L1 cache, Decay-SD and Decay-SP target both caches and hence they have potentially larger
optimization scope. In fact, comparing the savings only in the L2 cache shows that S-SP-Lazy,
Decay-SD, and Decay-SP reduce leakage energy consumption by 48.2%, 59.7%, and 69.2%.

Combine-I improves the unoptimized leakage energy by 49.3%, overall cache energy by 35.3%,
and energy-delay product by 25.1%. But the savings are less than that of Decay-SP. This is because
S-SP-Lazy targets only the lines in L2 cache that are moved into L1 cache and does not target the
cache blocks which just stay in L2 cache for a long period of time (Decay-SP does). Therefore, we
implement Combine-II, which employs both S-SP-Lazy and cache decay in L2 cache. Combine-II
generates the best energy results among these optimization strategies. As compared to the unopti-
mized case, it improves leakage and overall cache energy by 79.7% and 62.1%, respectively. These
energy benefits are due to its aggressive optimization strategy in L2. More specifically, the two
different methods (S-SP-Lazy and cache decay) complement with each other to optimize L2 en-
ergy. The last four groups of bars in Figure 9 summarize the average improvements for the four
optimization strategies discussed in this section from the leakage energy, overall cache energy, and
energy-delay product perspectives.

5. Sensitivity Analysis

To measure the robustness of the energy optimization strategies studied in this paper, we also mea-
sured their sensitivity to different parameters. In particular, we measured the energy savings when
cache configuration parameters (cache capacity, associativity, and block size), relative magnitudes
of leakage and dynamic energies, leakage saving factor in the state-preserving mode, the ratio of L2
subblock and L1 block leakage, and the effect of different reactivation time.

We first focus on one benchmark (epic) and vary the L1 and L2 cache parameters. The trends
observed in other benchmarks are similar to that of epic, so they are not included. Also, we focus
only on S-SP-Lazy and Combine-II strategies. Figure 14 gives the cache energy consumptions.
Each cache configuration is denoted as

(L1-Size,L1-Associativity,L1-Block-Size;L2-Size,L2-Associativity,L2-Block-Size),

with (32KB,2,32;1MB,2,128) being our default configuration. Note that in each experiment L1
instruction and L1 data caches have the same configuration. Each bar in this figure represents
energy consumption normalized with respect to the energy consumption of the simulation without
any leakage control with the default cache configuration. First we observe that energy savings are
obtained across different configuration. Further, when the L2 cache size increases, we witness a

16

MANAGING LEAKAGE ENERGY IN CACHE HIERARCHIES

0

10

20

30

40

50

60

70

80

No
rm

ali
ze

d
En

er
gy

 C
on

su
m

pt
ion

 (%
)

S−
SP

−L
az

y
Co

m
bin

e−
II

(3
2K

,2
,3

2:
1M

,2
,1

28
)

(3
2K

,2
,3

2:
12

8K
,2

,1
28

)

(3
2K

,2
,3

2:
25

6K
,2

,1
28

)

(3
2K

,2
,3

2:
51

2K
,2

,1
28

)

(3
2K

,2
,3

2:
1M

,1
,1

28
)

(3
2K

,2
,3

2:
1M

,4
,1

28
)

(3
2K

,2
,3

2:
1M

,8
,1

28
)

(3
2K

,2
,3

2:
2M

,2
,1

28
)

(1
6K

,2
,3

2:
1M

,2
,1

28
)

(1
6K

,4
,3

2:
1M

,2
,1

28
)

(6
4K

,1
,3

2:
1M

,2
,1

28
)

(6
4K

,2
,3

2:
1M

,2
,1

28
)

(3
2K

,2
,3

2:
1M

,2
,3

2)

(3
2K

,2
,3

2:
1M

,2
,6

4)

(3
2K

,2
,3

2:
1M

,2
,2

56
)

Leakage
Dynamic
Control

Figure 14: Normalized energy consumptions for different cache hierarchy configurations
(epic).

decrease in energy savings. The reason for this is that when the L2 capacity is higher, the number
of L2 subblocks that are in active or state-preserving mode increases.

We next modify the relative magnitude of leakage energy per cycle with respect to dynamic
energy per access. Specifically, we assume that the leakage energy per cycle of the entire L1 cache
is equal to half of the dynamic energy consumed per access. So, this gives more weight to dynamic
energy. Figure 15 gives the average improvements in this case for leakage energy, overall cache
energy, and energy-delay product. As in the previous case (Figure 9), Combine-II results in the best
energy behavior (79.73% improvement in leakage and 55.0% improvement in total cache energy)
and energy-delay product (40.3%). We see that, as expected, the leakage energy improvements
do not change significantly. But, since the impact of dynamic energy is increased, we witness
a decrease in overall cache energy savings compared to Figure 9. In addition, in this case, the
overhead cost (from the dynamic energy viewpoint) (due to our leakage optimization strategies) is
higher. We observe a similar reduction in energy-delay product savings. This is a direct result of
the decrease in overall energy savings.

We now modify the leakage saving factor when state-preserving leakage control mode is em-
ployed. Recall that we earlier assumed that, in each cycle, the state-preserving strategy consumes
10% of the original (active) per cycle leakage energy. We call this figure leakage saving factor.
In this set of experiments, we changed this figure to 30%. All other simulation parameters are the
same as in our base configuration. The results given in Figure 16 (average values over all benchmark
codes) reveal that, even in this case, the state-preserving strategy is superior to the state-destroying
one. In particular, both S-SP-Lazy and S-SP-Immed improves leakage energy, overall energy, and
energy-delay product. However, the energy savings due to preserving state are not as good. For
instance, with this new setup, S-SP-Lazy and S-SP-Immed improve overall cache energy by 29.2%
and 11.4%, respectively. In contrast, the corresponding numbers when we employed a leakage
saving factor of 10% were 37.7% and 14.6%.

17

LI, KADAYIF, TSAI, VIJAYKRISHNAN, KANDEMIR, IRWIN, & SIVASUBRAMANIAM

−60

−40

−20

0

20

40

60

80

100

A
ve

ra
ge

 S
av

in
gs

 (
%

)

C
on

se
rv

at
iv

e

S
−S

P
−L

az
y

S
−S

D
−L

az
y

S
−S

P
−I

m
m

ed

S
−S

D
−I

m
m

ed

D
ec

ay
−S

D

D
ec

ay
−S

P

C
om

bi
ne

−I

C
om

bi
ne

−I
I

−280.98 −5921.93
 −255.21

 −496.51 −65.25

Leakage
Total Cache Energy
Energy−Delay

Figure 15: Sensitivity to the relative magnitude of dynamic versus leakage: average leakage
energy, total cache energy, and energy-delay product improvements for different
optimization strategies.(over all benchmarks)

−60

−40

−20

0

20

40

60

80

100

A
ve

ra
ge

 S
av

in
gs

 (
%

)

C
on

se
rv

at
iv

e

S
−S

P
−L

az
y

S
−S

D
−L

az
y

S
−S

P
−I

m
m

ed

S
−S

D
−I

m
m

ed

D
ec

ay
−S

D

D
ec

ay
−S

P

C
om

bi
ne

−I

C
om

bi
ne

−I
I

−280.98 −6152.07
 −269.41

 −509.30 −62.81

Leakage
Total Cache Energy
Energy−Delay

Figure 16: Sensitivity to the leakage saving factor: % improvements in average leakage
energy, total cache energy, and energy-delay product for different optimization
strategies. (over all benchmarks)

18

MANAGING LEAKAGE ENERGY IN CACHE HIERARCHIES

1.00 0.75 0.50 0.25
0

5

10

15

20

25

30

35

40

45

A
ve

ra
ge

 S
av

in
gs

 (
%

)

Leakage
Total Cache Energy
Energy−Delay

Figure 17: Sensitivity to the ratio of L2 subblock and L1 block leakage in S-SP-Lazy
method.(over all benchmarks)

We then modify the ratio between leakage of L2 subblock and leakage of L1 block. Recall
that the default value was 1.00. But, using higher threshold voltage can let L2 cache consume less
leakage energy at the expense of extra L2 latency. Figure 17 shows the improvements of S-SP-Lazy
method in leakage and total cache energy for different ratios. We can conclude that our strategy still
brings benefits when the ratio of L2 vs L1 is reduced.

The time to reactivate a cache line in state-preserving or state-destroying mode to its normal state
depends on the actual circuit implementation. So far in this paper, we have used the voltage scaling
approach that incurs only a single cycle penalty for this reactivation. We consider an alternate
implementation using a modified gated-Vdd technique to study the influence of this parameter.

We custom-designed a 16-bit array of memory cells in 0.07 micron technology and performed
circuit simulation using HSPICE. We observed that the state of these cells were maintained from
a supply voltage of 1.0V down to 120mV. In order to achieve a 120mV voltage, a sized NMOS
switch was introduced between the ground rail and the memory cell. Using the NMOS switch
can reduce both bitline and cell leakage. When the power-switch is turned-on, a normal supply
voltage is provided to the circuit. However, when the power-switch is turned-off, the ground level
rises to 0.88V from 0V. Note that this is achieved by having an appropriately sized power-switch
that has a controlled leakage to provide the required minimum supply voltage. A 0.68 � m/0.07 � m
(width/length) NMOS device (with a threshold voltage of 200mV) was used as a power-switch
along with each memory array to achieve the required supply voltage of 120mV (See Figure 18).
We observe from our simulations that the overall leakage of the memory array can be reduced to 4%
of original leakage using the state-preserving mechanism. However, in order to activate a cache line
in state-preserving mode to a normal mode, our simulations indicate that a 19ns latency is required
for the ground level to settle back to 0V. This would incur a 38 cycle penalty as compared to the 1
cycle latency required for voltage settling in the circuit described in Section 2.

Thus, it is clear that the circuit choices can influence the latency for reactiving a cache block
in standby mode. To study this impact, in Figure 19 we simulate the epic with different reacti-
vation latency 50 cycles, 20 cycles, and 1 cycle, and compare the effect on energy consumption
and energy-delay product of four strategies. Comparing with long reactivation latency, small re-
activation latency performs very small increase in leakage and total cache energy savings, but it

19

LI, KADAYIF, TSAI, VIJAYKRISHNAN, KANDEMIR, IRWIN, & SIVASUBRAMANIAM

Sleep
Transistor

PMOS

NMOS
Vt

Vt

W/L

W/L

= 0.75/0.07

= 0.40/0.07
= -220mV

= 200mV

W/L = 0.68/0.07
Vt = 200mV

Standby
Bit

BL_(n-1)BL_1BL_0

cell_1 cell_(n-1)

Vdd

/ BL_0 / BL_1 / BL_(n-1)

Set
Reset

cell_0

WL >

Gnd_vr

Figure 18: An L2 subblock augmented with leakage control mechanism.

0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 S
av

in
gs

 (
%

)

S
−

S
P

−
La

zy

50
 C

yc
le

s

20
 C

yc
le

s

1
C

yc
le

S
−

S
P

−
Im

m
ed

50
 C

yc
le

s

20
 C

yc
le

s

1
C

yc
le

C
om

bi
ne

−
I

50
 C

yc
le

s

20
 C

yc
le

s

1
C

yc
le

C
om

bi
ne

−
II

50
 C

yc
le

s

20
 C

yc
le

s

1
C

yc
le

Leakage
Total Cache Energy
Energy−Delay

Figure 19: Sensitivity to the reactivation time: % improvements in average leakage energy,
total cache energy, and energy-delay product for epic.

has significant improvements on energy-delay product for S-SP-Lazy, Combine-I, and Combine-II
strategies.

6. Conclusions and Future Work

Duplication of data and instructions at different levels of memory hierarchy is costly from the leak-
age energy perspective. This paper first examined a leakage control mechanism that can preserve
the state of the memory cell. Using this state-preserving leakage control mechanism and a state-
destroying leakage control mechanism, we investigated five different strategies to put L2 subblocks
that hold duplicate copies of L1 blocks in energy saving states (leakage control modes). These
strategies differed from each other with respect to the circuit type that they employ (state-destroying

20

MANAGING LEAKAGE ENERGY IN CACHE HIERARCHIES

versus state-preserving), whether they conservatively or speculatively turn off L2 subblocks, and the
time that the L2 subblocks are reactivated. Our experimental results indicated that the best strat-
egy (S-SP-Lazy) in terms of energy and energy-delay product is to place the L2 subblock into a
state-preserving leakage control mode as soon as its contents are moved to L1 and to reactivate it
only when it is accessed. We then integrated this strategy with a previously proposed optimization
scheme, called cache decay, and showed that the integrated strategy generates better energy results.

In addition, we conducted a sensitivity analysis by changing several simulation parameters such
as cache configuration, leakage saving factor, the relative magnitude of per cycle leakage consump-
tion with respect to per access dynamic energy consumption, and the reactivation time. We believe
that this work is a step towards achieving our eventual goal of optimizing energy consumption at
different levels of the architecture without sacrificing too much performance.

This work can be extended in multiple ways:

� More powerful combined optimization strategies: In our current implementations of com-
bined strategies, a given data item can be placed into energy-saving mode in both the caches
at the same time. This incurs a performance penalty when such data is subsequently accessed.
We plan to investigate mechanisms that would maintain at least one active copy of data in ei-
ther L1 or L2 at any given time. We also want to perform experiments with strategies that
combine adaptive cache decay [10] with our speculative schemes.

� Combining state-preserving and state-destroying strategies: In some cases, it might be
beneficial to use state-preserving and state-destroying strategies together. For example, in
bringing a data from L2 to L1, we can first place the corresponding L2 subblock into the
state-preserving state. After some time, if the subblock is not activated, we can switch the
subblock’s state to the state-destroying one. Note that this would require changes to our
current circuit implementation to enable dynamic switching between state-preserving and
state-destroying modes.

� Software-based leakage optimization: We are in the process of building a compiler-based
strategy that tries to locate the last use of program variables. After determining the last use of
a variable, it modifies the corresponding load instruction such that, when executed at runtime,
the modified load turns off the cache block that holds the variable. Obviously, the success of
such a strategy depends strongly on compiler’s ability of identifying last use of variables. We
have recently implemented a compiler based leakage control for the instruction cache [29].

� Integrating hardware-based and software-based strategies: Our long term plan is to exploit
both hardware-based and compiler-based strategies in a unified optimization framework. This
framework will analyze the last use of variables and, depending on the result of this analysis,
will select a suitable combination of optimizations.

� Sensitivity to soft errors: A detailed analysis of the impact of soft errors when using low
voltages to maintain memory state is beyond the scope of this paper and is part of our ongoing
research. Initial research of this analysis is available in [24].

21

LI, KADAYIF, TSAI, VIJAYKRISHNAN, KANDEMIR, IRWIN, & SIVASUBRAMANIAM

References

[1] A. Chandrakasan, W. J. Bowhill, and F. Fox, Design of High-Performance Microprocessor
Circuits. IEEE Press, 2001.

[2] K. Itoh, K. Sasaki, and Y. Nakagome, “Trends in low-power RAM circuit technologies,” Pro-
ceedings of IEEE, vol. 83, pp. 524–543, Apr. 1995.

[3] S. Kim, N. Vijaykrishnan, M. Kandemir, A. Sivasubramaniam, M. J. Irwin, and E. Geethan-
jali, “Power-aware partitioned cache architectures,” in Proceedings of the 2001 international
symposium on Low power electronics and design (ISLPED’01), pp. 64–67, 2001.

[4] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative cache for high perfor-
mance and low energy consumption,” in Proceedings 1999 international symposium on Low
power electronics and design (ISLPED’99), pp. 273–275, 1999.

[5] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K. Roy, “Reducing set-associative
cache energy via way-prediction and selective direct-mapping,” in Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitecture, pp. 54–65, 2001.

[6] D. H. Albonesi, “Selective cache ways: on-demand cache resource allocation,” in Proceedings
of the 32nd annual ACM/IEEE international symposium on Microarchitecture (MICRO-32),
pp. 248–259, 1999.

[7] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache: an energy efficient memory
structure,” in Proceedings of the 30th annual ACM/IEEE international symposium on Microar-
chitecture (MICRO-30), pp. 184–193, 1997.

[8] L. Villa, M. Zhang, and K. Asanovic, “Dynamic zero compression for cache energy reduction,”
in Proceedings of the 33rd annual ACM/IEEE international symposium on Microarchitecture
(MICRO-33), pp. 214–220, 2000.

[9] S. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vijaykumar, “An integrated cir-
cuit/architecture approach to reducing leakage in deep-submicron high-performance I-caches,”
in Proceedings of Seventh International Symposium on High-Performance Computer Architec-
ture (HPCA-7), pp. 147–157, 2001.

[10] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploiting generational behavior to re-
duce cache leakage power,” in Proceedings of the 28th annual international symposium on on
Computer architecture (ISCA-28), pp. 240–251, 2001.

[11] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and M. Wolczko, “Tuning
garbage collection in an embedded java environment,” in Proceedings of Eighth International
Symposium on High-Performance Computer Architecture (HPCA-8), pp. 80–91, 2002.

[12] P. R. V. d. Meer and A. V. Staveren, “Standby-current reduction for deep sub-micron VLSI
CMOS circuits: smart series switch,” in the ProRISC/IEEE Workshop, pp. 401–404, Dec.
2000.

22

MANAGING LEAKAGE ENERGY IN CACHE HIERARCHIES

[13] B. Nikolic, “State-preserving leakage control mechanisms,” Gigascale Silicon Research Cen-
ter Annual Report, Sept. 2001.

[14] A. Agarwal, H. Li, and K. Roy, “Drg-cache: a data retention gated-ground cache for low
power,” in Proceedings of the 39th conference on Design automation (DAC-39), pp. 473–478,
2002.

[15] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte, “Adaptive mode control: A static-
power-efficient cache design,” in the 10th International Conference on Parallel Architectures
and Compilation Techniques (PACT’01), pp. 61–70, Sept. 2001.

[16] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy caches: simple tech-
niques for reducing leakage power,” in Proceedings of the 29th annual international sympo-
sium on Computer architecture (ISCA-29), pp. 148–157, 2002.

[17] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Drowsy instruction caches - leakage
power reduction using dynamic voltage scaling,” in Proceedings of the 33th annual ACM/IEEE
international symposium on Microarchitecture (MICRO-35), Nov. 2002.

[18] H. Qin and J. Rabaey, “Leakage suppression of embedded memories,” Gigascale Silicon Re-
search Center Annual Review, 2002.

[19] S. Heo, K. Barr, M. Hampton, and K. Asanovic, “Dynamic fine-grain leakage reduction us-
ing leakage-biased bitlines,” in Proceedings of the 29th annual international symposium on
Computer architecture (ISCA-29), pp. 137–147, 2002.

[20] N. P. Jouppi and S. J. E. Wilton, “Tradeoffs in two-level on-chip caching,” in Proceedings of
the 21ST annual international symposium on Computer architecture (ISCA-21), pp. 34–45,
1994.

[21] T. May and M. Woods, “Alpha-particled-induced soft errors in dynamic memories,” IEEE
Trans. on Electron Devices, vol. ED-26, Jan. 1979.

[22] “Berkeley predictive model. http://www-device.eecs.berkeley.edu.”

[23] L. Li, I. Kadayif, Y.-F. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and A. Sivasubra-
maniam, “Leakage energy management in cache hierarchies,” in the 11th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT’02), pp. 131–140, Sept.
2002.

[24] V. Degalahal, N. Vijaykrishnan, and M. J. Irwin, “Analyzing soft errors in leakage optimized
sram designs,” in Sixteenth International Conference on VLSI Design, Jan. 2003.

[25] D. C. Burger and T. M. Austin, “The SimpleScalar tool-set, Version 2.0,” Tech. Rep. 1342,
Dept. of Computer Science, UW, June 1997.

[26] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: a tool for evaluating and
synthesizing multimedia and communicatons systems,” in Proceedings of the 30th annual
ACM/IEEE international symposium on Microarchitecture (MICRO-30), pp. 330–335, 1997.

23

LI, KADAYIF, TSAI, VIJAYKRISHNAN, KANDEMIR, IRWIN, & SIVASUBRAMANIAM

[27] “Spec cpu2000 benchmark. http://www.spec.org/.”

[28] R. Cooksey and D. Grunwald, “Characterization of the spec2000 benchmark suite.
http://www.cs.colorado.edu/ rcooksey/pubs.html,” 2001.

[29] W. Zhang, J. S. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Compiler-
directed instruction cache leakage optimization,” in Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture (MICRO-35), Nove. 2002.

[30] L. Benini and G. de Micheli, “System-level power optimization: techniques and tools,” ACM
Transactions on Design Automation of Electronic Systems (TODAES), vol. 5, no. 2, pp. 115–
192, 2000.

[31] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, pp. 23–29, July
1999.

[32] J. A. Butts and G. S. Sohi, “A static power model for architects,” in Proceedings of the 33rd
annual ACM/IEEE international symposium on Microarchitecture (MICRO-33), pp. 191–201,
2000.

[33] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-level power
analysis and optimizations,” in Proceedings of the 27th annual international symposium on
Computer architecture (ISCA-27), pp. 83–94, 2000.

[34] A. Chandrakasan and R. Brodersen, Low Power Digital CMOS Design. Kluwer Academic
Publishers, 1995.

[35] R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose microprocessors,” IEEE
Journal of Solid-State Circuits, vol. 31, pp. 1277–1284, Sept. 1996.

[36] H. Kawaguchi, K. Nose, and T. Sakurai, “A super cut-off CMOS scheme for 0.5V supply
voltage with pico-ampere standby current,” IEEE Journal of Solid-State Circuits, vol. 35,
pp. 1498–1501, Oct. 2000.

[37] T. Kuroda and T. Sakurai, “Threshold-voltage control schemes through substrate-bias for low-
power high-speed CMOS LSI design,” Journal of VLSI Signal Processing Systems, vol. 13,
pp. 191–201, Aug. 1996.

[38] S. Mutoh and et al, “1-V power supply high-speed digital circuit technology with multi-
threshold-voltage CMOS,” IEEE Journal of Solid State Circuits, vol. 30, pp. 847–854, Aug.
1995.

[39] J. Rabaey, Digital integrated circuits: a design perspective. Prentice Hall Inc. online revisions
of new chapters.
http://bwrc.eecs.berkeley.edu/Classes/ICDesign/EE141f00/notes.html.

[40] Y. Ye, S. Borkar, and V. De, “A new technique for standby leakage reduction in high-
performance circuits,” in the Symposium on VLSI Circuits, pp. 40–41, 1998.

24

