
Journal of Instruction-Level Parallelism 5 (2003) 1-33 Submitted 10/02; published 4/03

Quantifying the Impact of Input Data Sets on Program

Behavior and its Applications

Lieven Eeckhout leeckhou@elis.rug.ac.be

Hans Vandierendonck hvdieren@elis.rug.ac.be

Koen De Bosschere kdb@elis.rug.ac.be

Department of Electronics and Information Systems (ELIS), Ghent University

Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium

Abstract

Having a representative workload of the target domain of a microprocessor is extremely
important throughout its design. The composition of a workload involves two issues: (i)
which benchmarks to select and (ii) which input data sets to select per benchmark. Unfor-
tunately, it is impossible to select a huge number of benchmarks and respective input sets
due to the large instruction counts per benchmark and due to limitations on the available
simulation time. In this paper, we use statistical data analysis techniques such as prin-
cipal components analysis (PCA) and cluster analysis to efficiently explore the workload
space. Within this workload space, different input data sets for a given benchmark can be
displayed, a distance can be measured between program-input pairs that gives us an idea
about their mutual behavioral differences and representative input data sets can be selected
for the given benchmark. This methodology is validated by showing that program-input
pairs that are close to each other in this workload space indeed exhibit similar behavior.
The final goal is to select a limited set of representative benchmark-input pairs that span
the complete workload space. Next to workload composition, we discuss two other possible
applications, namely getting insight in the impact of input data sets on program behavior
and evaluating the representativeness of sampled traces.

1. Introduction

The first step when designing a new microprocessor is to compose a workload that should
be representative for the set of applications that will be run on the microprocessor once
it will be used in a commercial product [1, 2]. A workload then typically consists of a
number of benchmarks with respective input data sets taken from various benchmarks
suites, such as SPEC, TPC, MediaBench, etc. This workload will then be used during the
various simulation runs to perform design space explorations. It is obvious that workload
design, or composing a representative workload, is extremely important in order to obtain a
microprocessor design that is optimal for the target environment of operation. The question
when composing a representative workload is thus twofold: (i) which benchmarks and (ii)
which input data sets to select. In addition, we have to take into account that even high-level
architectural simulations are extremely time-consuming. As such, the total simulation time
should be limited as much as possible to limit the time-to-market. This implies that the
total number of benchmarks and input data sets should be limited without compromising
the final design. Ideally, we would like to have a limited set of benchmark-input pairs

c©2003 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



Eeckhout, Vandierendonck & De Bosschere

spanning the complete workload space, which contains a variety of the most important
types of program behavior.

Conceptually, the complete workload design space can be viewed as a p-dimensional
space with p the number of important program characteristics that affect performance, e.g.,
branch prediction accuracy, cache miss rates, instruction-level parallelism, etc. Obviously,
p will be too large to display the workload design space understandably. In addition,
correlation exists between these variables which reduces the ability to understand what
program characteristics are fundamental to make the diversity in the workload space. In
this paper, we reduce the p-dimensional workload space to a q-dimensional space with q � p
(q = 2 to q = 4 typically) making the visualisation of the workload space possible without
losing important information. This is achieved by using statistical data reduction techniques
such as principal components analysis (PCA) and cluster analysis.

Each benchmark-input pair is a point in this (reduced) q-dimensional space obtained
after PCA. We can expect that different benchmarks will be ‘far away’ from each other
while different input data sets for a single benchmark will be clustered together. This
representation gives us an excellent opportunity to measure the impact of input data sets
on program behavior. Weak clustering (for various inputs and a single benchmark) indicates
that the input set has a large impact on program behavior; strong clustering on the other
hand, indicates a small impact. This claim is validated by showing that program-input pairs
that are close to each other in the workload space indeed exhibit similar behavior. I.e., ‘close’
program-input pairs react in similar ways when changes are made to the architecture.

In this paper, which is an extended version of [3], we show that this methodology can
be used for workload design. Indeed, strong clustering suggests that a single or only a
few input sets should be selected to be representative for the cluster. This will reduce
the total simulation time significantly for two reasons: (i) the total number of benchmark-
input pairs is reduced; and (ii) we can select the benchmark-input pair with the smallest
dynamic instruction count among all the pairs in the cluster. In addition, we show that
this method is also useful in the context of trace sampling [4, 5, 6, 7, 8, 9, 10, 11], or the
simulation of a restricted number of samples taken from a complete execution trace. For
trace sampling to be successful, it is important that the sampled traces are representative.
The representativeness of a sampled trace can be evaluated using the methodology presented
in this paper, i.e., sampled traces that are close to the complete program execution can be
considered as being representative.

Another potential application, next to getting insight in program behavior, workload
composition and trace sampling, is profile-driven compiler optimizations. During profile-
guided optimizations, the compiler uses information from previous program runs (obtained
through profiling) to guide compiler optimizations. Obviously, for effective optimizations,
the input set used for obtaining this profiling information should be representative for a
large set of possible input sets. The methodology proposed in this paper can be useful in
this respect because input sets that are close to each other in the workload space will exhibit
similar behavior.

This paper is organized as follows. In section 2, the program characteristics used are
enumerated. Principal components analysis, cluster analysis and their use in the context
of this paper are discussed in section 3. In section 4, we show that these data reduction
techniques are useful in the context of workload characterization. In addition, we discuss

2



Quantifying the Impact of Input Data Sets on Program Behavior

how input data sets affect program behavior. In section 5, we discuss two important appli-
cations, namely (i) workload composition, or the selection of representative program-input
pairs, and (ii) the evaluation of the representativeness of sampled traces. Section 6 discusses
related work. We conclude in section 7.

2. Workload Characterization

It is important to select program characteristics that affect performance for performing
data analysis techniques in the context of workload characterization. Selecting program
characteristics that do not affect performance, such as the dynamic instruction count, might
discriminate benchmark-input pairs on such a characteristic yielding no information about
the behavior of the benchmark-input pair when executed on a microprocessor. On the other
hand, it is important to incorporate as many program characteristics as possible so that the
analysis done on it will be predictive, i.e., we want strongly clustered program-input pairs
to behave similarly so that a single program-input pair can be chosen as a representative
of the cluster. The determination of what program characteristics to be included in the
analysis in order to obtain a predictive analysis is a study on its own and is out of the scope
of this paper. The goal of this paper is to show that data analysis techniques such as PCA
and cluster analysis can be a helpful tool for getting insight in the workload space when
composing a representative workload.

We have identified the following program characteristics:

• Instruction mix. We consider five instruction classes: integer arithmetic operations,
logical operations, shift and byte manipulation operations, load/store operations and
control operations.

• Branch prediction accuracy. We consider the branch prediction accuracy of three
branch predictors: a bimodal branch predictor, a gshare branch predictor and a hy-
brid branch predictor. The bimodal branch predictor consists of an 8K-entry table
containing 2-bit saturating counters which is indexed by the program counter of the
branch. The gshare branch predictor is an 8K-entry table with 2-bit saturating coun-
ters indexed by the program counter xor-ed with the taken/not-taken branch history
of 12 past branches. The hybrid branch predictor [12] combines the bimodal and the
gshare predictor by choosing among them dynamically. This is done using a meta
predictor that is indexed by the branch address and contains 8K 2-bit saturating
counters.

• Data cache miss rates. Data cache miss rates were measured for five different
cache configurations: an 8KB and a 16KB direct mapped cache, a 32KB and a 64KB
two-way set-associative cache and a 128KB four-way set-associative cache. The block
size was set to 32 bytes.

• Instruction cache miss rates. Instruction cache miss rates were measured for the
same cache configurations mentioned for the data cache.

• Sequential flow breaks. We have also measured the number of instructions between
two sequential flow breaks or, in other words, the number of instructions between two

3



Eeckhout, Vandierendonck & De Bosschere

taken branches. Note that this metric is higher than the basic block size because some
basic blocks ‘fall through’ to the next basic block.

• Instruction-level parallelism. To measure the amount of ILP in a program, we
consider an infinite-resource machine, i.e., infinite number of functional units, perfect
caches, perfect branch prediction, etc. In addition, we schedule instructions as soon as
possible assuming unit execution instruction latency. The only dependencies consid-
ered between instructions are read-after-write (RAW) dependencies through registers
as well as through memory. In other words, perfect register and memory renaming
are assumed in these measurements.

For this study, there are p = 20 program characteristics in total on which the analyses
are done.

3. Data Analysis

In the first two subsections of this section, we will discuss two data analysis techniques,
namely principal components analysis (PCA) and cluster analysis. In the last subsection,
we will detail how we used these techniques for analyzing the workload space in this study.

3.1 Principal Components Analysis

Principal components analysis (PCA) [13] is a statistical data analysis technique that
presents a different view on the measured data. It builds on the assumption that many
variables (in our case, program characteristics) are correlated and hence, they measure the
same or similar properties of the program-input pairs. PCA computes new variables, called
principal components, which are linear combinations of the original variables, such that
all principal components are uncorrelated. PCA tranforms the p variables X1, X2, . . . , Xp

into p principal components Z1, Z2, . . . , Zp with Zi =
∑p

j=1 aijXj . This transformation
has the properties (i) V ar[Z1] > V ar[Z2] > . . . > V ar[Zp] which means that Z1 con-
tains the most information and Zp the least; and (ii) Cov[Zi, Zj ] = 0,∀i 6= j which means
that there is no information overlap between the principal components. Note that the
total variance in the data remains the same before and after the transformation, namely
∑p

i=1 V ar[Xi] =
∑p

i=1 V ar[Zi].
As stated in the first property in the previous paragraph, some of the principal com-

ponents will have a high variance while others will have a small variance. By removing
the components with the lowest variance from the analysis, we can reduce the number of
program characteristics while controlling the amount of information that is thrown away.
We retain q principal components which is a significant information reduction since q � p
in most cases, typically q = 2 to q = 4. To measure the fraction of information retained
in this q-dimensional space, we use the amount of variance (

∑q
i=1 V ar[Zi])/(

∑p
i=1 V ar[Xi])

accounted for by these q principal components. Typically 85% to 90% of the total variance
should be explained by the retained principal components.

In this study the p original variables are the program characteristics mentioned in sec-
tion 2. By examining the most important q principal components, which are linear combi-
nations of the original program characteristics (Zi =

∑p
j=1 aijXj , i = 1, . . . , q), meaningful

interpretations can be given to these principal components in terms of the original program

4



Quantifying the Impact of Input Data Sets on Program Behavior

characteristics. A coefficient aij that is close to +1 or -1 implies a strong impact of the
original characteristic Xj on the principal component Zi. A coefficient aij that is close to
0 on the other hand, implies no impact.

The next step in the analysis is to display the various benchmarks as points in the q-
dimensional space built up by the q principal components. This can be done by computing
the values of the q retained principal components for each program-input pair. As such, a
view can be given on the workload design space and the impact of input data sets on program
behavior can be displayed, as will be discussed in the evaluation section of this paper. Note
that the projection on the q-dimensional space will be much easier to understand than a
view on the original p-dimensional space for two reasons: (i) q is much smaller than p:
q � p, and (ii) the q-dimensional space is uncorrelated.

During principal components analysis, one can either work with normalized or non-
normalized data (the data is normalized when the mean of each variable is zero and its
variance is one). In the case of non-normalized data, a higher weight is given in the analysis
to variables with a higher variance. In our experiments, we have used normalized data
because of our heterogeneous data; e.g., the variance of the ILP is orders of magnitude
larger than the variance of the data cache miss rates.

3.2 Cluster Analysis

Cluster analysis [13] is another data analysis technique that is aimed at clustering n cases, in
our case program-input pairs, based on the measurements of p variables, in our case program
characteristics. The final goal is to obtain a number of groups, containing program-input
pairs that have ‘similar’ behavior. There exist two commonly used types of clustering tech-
niques, namely linkage clustering and K-means clustering. These two clustering techniques
will be discussed in what follows.

Linkage clustering starts with a matrix of distances between the n cases or program-
input pairs. As a starting point for the algorithm, each program-input pair is considered as
a group. In each iteration of the algorithm, the two groups that are most close to each other
(with the smallest distance in the p-dimensional space, also called the linkage distance) will
be combined to form a new group. As such, close groups are gradually merged until finally
all cases will be in a single group. This can be represented in a so called dendrogram, which
graphically represents the linkage distance for each group merge at each iteration of the
algorithm. Having obtained a dendrogram, it is up to the user to decide how many clusters
to take. This decision can be made based on the linkage distance. Indeed, small linkage
distances imply strong clustering while large linkage distances imply weak clustering. There
exist several methods for calculating the distance between groups or clusters of program-
input pairs all potentially leading to different clustering results. In this paper, we consider
two possibilities that were found to produce results that are quite consistent with each
other. We have used the furthest neighbor strategy (also known as complete linkage) and
the weighted pair-group average strategy. In complete linkage, the distance between two
clusters is computed as the largest distance between any two program-input pairs from the
clusters (or thus the furthest neighbor). In the weighted pair-group average method, the
distance between two clusters is computed as the weighted average distance between all

5



Eeckhout, Vandierendonck & De Bosschere

pairs of program-input points in two different clusters. The weighting of the average is
done by considering the cluster size, i.e., the number of program-input points in the cluster.

Next to linkage clustering we did also consider K-means clustering. K-means clustering
produces exactly K clusters with the greatest possible distinction. The algorithm works
as follows. In each iteration, the distance is calculated for each program-input pair to the
center of each cluster. A program-input pair will then be assigned to the closest cluster. As
such, new cluster centers can be computed. This algorithm is iterated until no more changes
are observed. It is well known that the result of K-means clustering can be dependent on the
choice of the initial cluster centers. In this paper we have maximized the distance between
the various cluster centers (being single program-inputs pairs at this stage of the algorithm)
as an initial estimate.

3.3 Workload Analysis

The workload analysis done in this paper is a combination of PCA and cluster analysis and
consists of the following steps:

1. The p = 20 program characteristics as discussed in section 2 are measured by instru-
menting the benchmark programs with ATOM [14], a binary instrumentation tool for
the Alpha architecture. With ATOM, a statically linked binary can be transformed
to an instrumented binary. Executing this instrumented binary on an Alpha machine
yields us the program characteristics that will be used throughout the analysis. Mea-
suring these p = 20 program characteristics was done for the 79 program-input pairs
mentioned in section 4.1.

2. In a second step, these 79 (number of program-input pairs) × 20 (= p, number of
program characteristics) data points are normalized so that for each program char-
acteristic the average equals zero and the variance equals one. On these normalized
data points, principal components analysis (PCA) is done using STATISTICA [15], a
package for statistical computations. This works as follows. A 2-dimensional matrix
is presented as input to STATISTICA that has 20 columns representing the original
program characteristics. There are 79 rows in this matrix representing the various
program-input pairs. On this matrix, PCA is performed by STATISTICA which
yields us p principal components.

3. Now, it is up to the user to determine how many principal components need to be
retained. This decision is made based on the amount of variance accounted for by the
retained principal components.

4. The q retained principal components can be analyzed and a meaningful interpretation
can be given to them. This is done based on the coefficients aij, also called the factor
loadings, as they occur in the following equation Zi =

∑p
j=1 aijXj , with Zi, 1 ≤ i ≤ q

the principal components and Xj , 1 ≤ j ≤ p the original program characteristics.
A positive coefficient aij means a positive impact of program characteristic Xj on
principal component Zi; a negative coefficient aij implies a negative impact. If a
coefficient aij is close to zero, this means Xj has (nearly) no impact on Zi.

6



Quantifying the Impact of Input Data Sets on Program Behavior

5. The program-input pairs can be displayed in the workload space built up by these q
principal components. This can easily be done by computing Zi =

∑p
j=1 aijXj for

each program-input pair.

6. Rescale the q principal components to unit variance.

7. Within this rescaled q-dimensional space the Euclidean distance can be computed be-
tween the various program-input pairs as a reliable measure for the way program-input
pairs differ from each other. There are two reasons supporting this statement. First,
the values along the axes in this space are uncorrelated since they are determined
by the principal components which are uncorrelated by construction. The absence
of correlation is important when calculating the Euclidean distance because two cor-
related variables—that essentially measure the same thing—will contribute a similar
amount to the overall distance as an independent variable; as such, these variables
would be counted twice, which is undesirable. Second, through rescaling the principal
components (previous step), the principal components are placed on a common scale.
Without rescaling, the variance of a principal component—which is a manifestation
of the correlation in the original data—would give a higher weight in the calculation
of the Euclidean distance to correlated characteristics in the original data.

8. Finally, cluster analysis can be done using the distance between program-input pairs
as determined in the previous step. Based on the dendrogram a clear view is given
on the clustering within the workload space.

The reason why we chose to first perform PCA and subsequently cluster analysis instead
of applying cluster analysis on the initial data is as follows. The original variables are highly
correlated which implies that an Euclidean distance in this space is unreliable due to this
correlation as explained previously. First performing PCA alleviates this problem. Another
approach would have been to use the Mahalanobis distance1 [13] which also takes into
account the correlation between variables. However, there are two advantages of using
PCA instead of the Mahalanobis distance. First, PCA gives us the opportunity to visualize
the workload space in an understandable way. Second, PCA helps us in explaining why
program-input pairs differ from each other in terms of the original program characteristics.
Note that the Mahalanobis distance is equivalent to the distance measure that is used
in this paper if all the principal components would have been used in our calculation of
the Euclidean distance. Since we keep the leading principal components, which account
for all but a small fraction of the variance, our distance measure becomes a very close
approximation of the real Mahalanobis distance.

4. Evaluation

In this section, we first present the program-input pairs that are used in this study. Second,
we show the results of performing the workload analysis as discussed in section 3.3. Finally,
the methodology is validated in section 4.3.

1. For calculating the Mahalanobis distance, the overall covariance matrix of the original characteristics X

can be used.

7



Eeckhout, Vandierendonck & De Bosschere

benchmark input dyn. I-cnt. (M) I-footprint D-footprint (K)

gcc amptjp 835 147,402 375
c-decl-s 835 147,369 375
cccp 886 145,727 371
cp-decl 1,103 143,153 579
dbxout 141 120,057 215
emit-rtl 104 127,974 108
explow 225 105,222 280
expr 768 142,308 653
gcc 141 129,852 125
genoutput 74 117,818 104
genrecog 100 124,362 133
insn-emit 126 84,777 199
insn-recog 409 105,434 357
integrate 188 133,068 199
jump 133 126,400 130
print-tree 136 118,051 201
protoize 298 137,636 159
recog 227 123,958 161
regclass 91 125,328 117
reload1 778 146,076 542
stmt-protoize 654 148,026 261
stmt 356 138,910 250
toplev 168 125,810 218
varasm 166 139,847 168

postgres Q2 227 57,297 345
Q3 948 56,676 358
Q4 564 53,183 285
Q5 7,015 60,519 654
Q6 1,470 46,271 1,080
Q7 932 69,551 631
Q8 842 61,425 11,821
Q9 9,343 68,837 10,429
Q10 1,794 62,564 681
Q11 188 65,747 572
Q12 1,770 65,377 258
Q13 325 65,322 264
Q14 1,440 67,966 448
Q15 1,641 67,246 640
Q16 82,228 58,067 389
Q17 183 54,835 366

Table 1: Characteristics of the benchmarks used (part 1) with their inputs, dynamic instruc-
tion count (in millions), instruction footprint (number of instructions executed at
least once) and data memory footprint in 64-bit words (in thousands).

4.1 Experimental Setup

In this study, we have used the SPECint95 benchmarks (http://www.spec.org) and a
database workload consisting of TPC-D queries (http://www.tpc.org), see Tables 1 and 2.
The reason why we chose SPECint95 instead of the more recent SPECint2000 is to limit
the simulation time. SPEC opted to dramatically increase the runtimes of the SPEC2000
benchmarks compared to the SPEC95 benchmarks which is beneficial for performance eval-
uation on real hardware but impractical for simulation purposes. In addition, there are
more reference inputs provided with SPECint95 than with SPECint2000. For gcc (GNU C
compiler) and li (lisp interpreter), we have used all the reference input files. For ijpeg (image
processing), penguin, specmun and vigo were taken from the reference input set. The other

8



Quantifying the Impact of Input Data Sets on Program Behavior

benchmark input dyn. I-cnt. (M) I-footprint D-footprint (K)

li boyer 226 9,067 36
browse 672 9,607 39
ctak 583 8,106 18
dderiv 777 9,200 16
deriv 719 8,826 15
destru2 2,541 9,182 16
destrum2 2,555 9,182 16
div2 2,514 8,546 19
puzzle0 2 8,728 19
tak2 6,892 8,079 16
takr 1,125 8,070 36
triang 3 9,008 15

ijpeg band (2362x1570) 2,934 16,183 5,718
beach (512x480) 254 16,039 405
building (1181x1449) 1,626 16,224 2,742
car (739x491) 373 16,294 596
dessert (491x740) 353 16,267 587
globe (512x512) 274 16,040 436
kitty (512x482) 267 16,088 412
monalisa (459x703) 259 16,160 508
penguin (1024x739) 790 16,128 1,227
specmun (1024x688) 730 15,952 1,136
vigo (1024x768) 817 16,037 1,273

compress 14000000 e 2231 (ref) 60,102 4,507 4,601
10000000 e 2231 42,936 4,507 3,318
5000000 e 2231 21,495 4,494 1,715
1000000 e 2231 4,342 4,490 433
500000 e 2231 2,182 4,496 272
100000 e 2231 423 4,361 142

m88ksim train 24,959 11,306 4,834
ref 71,161 14,287 4,834

vortex train 3,244 78,766 1,266
ref 92,555 78,650 5,117

perl jumble 2,945 21,343 5,951
primes 17,375 16,527 8
scrabbl 28,251 21,674 4,098

go 50 9 2stone9.in 593 55,894 45
50 21 9stone21.in 35,758 62,435 57
50 21 5stone21.in 35,329 62,841 57

Table 2: Characteristics of the benchmarks used (part 2) with their inputs, dynamic instruc-
tion count (in millions), instruction footprint (number of instructions executed at
least once) and data memory footprint in 64-bit words (in thousands).

images that served as input to ijpeg were taken from the web. The dimensions of the images
are shown between brackets. For compress (text compression), we have adapted the refer-
ence input ‘14000000 e 2231’ to obtain different input sets. For m88ksim (microprocessor
simulation) and vortex (object-oriented database), we have used the train and the reference
inputs. The same was done for perl (perl interpreter): jumble was taken from the train
input, and primes and scrabbl were taken from the reference input; as well as for go (game):
‘50 9 2stone9.in’ from the train input, and ‘50 21 9stone21.in’ and ‘50 21 5 stone21.in’ from
the reference input.

9



Eeckhout, Vandierendonck & De Bosschere

In addition to SPECint95, we used postgres v6.3 running the decision support TPC-D
queries over a 100MB Btree-indexed database. For postgres, we ran all TPC-D queries
except for query 1 because of memory constraints on our machine.

The benchmarks were compiled with optimization level -O4 and linked statically with
the -non shared flag for the Alpha architecture.

4.2 Results

In this section, we will first perform PCA on the data for the various inputs of gcc. Sub-
sequently, the same will be done for li and postgres. Finally, PCA and cluster analysis will
be applied on the data for all the benchmark-input pairs of Tables 1 and 2. We present the
data for gcc, li and postgres before presenting the analysis of all the program-input pairs
because these three benchmarks illustrate different aspects of the techniques in terms of the
number of retained principal components, clustering, etc.

4.2.1 Gcc

Based on Figure 1, we retained two principal components for the 24 input sets of gcc.
These two principal components together account for 88.3% of the total variance; the first
and the second component account for 67.9% and 20.4% of the total variance, respectively.
In Figure 2, the factor loadings are presented for these two principal components. E.g.,
this means that the first principal component is computed as PC1 = −0.141 × ILP +
0.908 × bimodal + 0.852 × gshare + . . .. The first component is positively dominated,
see Figure 2, by the branch prediction accuracy, the percentage arithmetic, logical and
control operations and the D-cache miss rates; and negatively dominated by the number
of instructions between two taken branches, the percentage load/store operations and the
I-cache miss rates. The second component is positively dominated by the percentage shift
operations; and negatively dominated by the ILP. Figure 3 presents the various input sets
of gcc in the 2-dimensional space built up by these two components. Data points in this
graph with a high value along the first component, have high branch prediction accuracies,
high percentages of arithmetic, logical and control operations and high D-cache miss rates
compared to the other data points; in addition, these data points also have a low number of
instructions between two taken branches, a low percentage load/store operations and low
I-cache miss rates. Note that only relative distances are important. For example, emit-rtl

and insn-emit are relatively closer to each other than insn-emit and varasm.

Figure 3 shows that gcc executing input explow exhibits a different behavior than the
other inputs. This is due to its high D-cache miss rates, its high branch prediction accuracies,
its high percentage arithmetic, logical, shift and control operations; and its low ILP, its
low percentage load/store operations, its low number of instructions between two taken
branches, and its low I-cache miss rates. The difference in program behavior for inputs emit-

rtl and insn-emit is mainly due to its high I-cache miss rate, its high percentage load/store
operations, its low branch prediction accuracy, its low percentage arithmetic, logical and
control operations and its low D-cache miss rates. This can be concluded from the factor
loadings presented in Figure 2; we also verified that this is true by inspecting the original
data. The strong cluster in the middle of the graph contains the inputs gcc, genoutput,
genrecog, jump, regclass, stmt and stmt-protoize. Note that although the characteristics

10



Quantifying the Impact of Input Data Sets on Program Behavior

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

number of principal components

p
e
rc

e
n
ta

g
e

v
a
ri
a
n
c
e

e
x
p
la

in
e
d

Figure 1: Amount of variance explained for gcc.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

IL
P

b
im

o
d

a
l
B

P

g
s
h

a
re

B
P

h
y
b

ri
d

B
P

ld
/s

t
o

p
s

a
ri

th
o

p
s

lo
g

o
p

s

s
h

if
t
o

p
s

c
tr

l
o

p
s

fl
o

w
b

re
a

k

I$
8

K
B

I$
1

6
K

B

I$
3

2
K

B

I$
6

4
K

B

I$
1

2
8

K
B

D
$

8
K

B

D
$

1
6

K
B

D
$

3
2

K
B

D
$

6
4

K
B

D
$

1
2

8
K

B

principal component 1

principal component 2

Figure 2: Factor loadings for gcc.

-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3 4

principal component 1

p
ri

n
c
ip

a
l
c
o

m
p

o
n

e
n

t
2

explow

emit-rtl

insn-emit

protoize

varasm

recog

print-tree

expr

reload1

dbxout

insn-recog

cp-decl

toplev

integrate

cccp

amptjp +
c-decl-s

Figure 3: Workload space for gcc.

11



Eeckhout, Vandierendonck & De Bosschere

mentioned in Tables 1 and 2 (i.e., dynamic instruction count, I-footprint and D-footprint)
are significantly different, these inputs result in a quite similar program behavior.

4.2.2 Li

Based on Figure 4, we retained three principal components for the lisp interpreter li. These
three principal components together account for 87.0% of the total variance; the first com-
ponent explains 42.2% of the total variance, the second component 33.4% and the third
component 11.4%, respectively. The first component is positively dominated, see Figure 5,
by the percentage shift operations and the miss rates for D-caches larger than 16KB; and
negatively dominated by the miss rates for I-caches smaller than 16KB. The second com-
ponent is positively dominated by the percentage arithmetic and logical operations and the
I-cache miss rates for caches larger than 32KB; and negatively dominated by the percent-
age load/store operations and the number of instructions between two taken branches. The
third component is negatively dominated by the amount of ILP and the percentage control
operations.

Figure 6 presents the various input sets of li in the 3-dimensional space built up by
the three retained principal components: the first component versus the second component
on the left and the third component versus the second on the right. Seven input sets
result in a behavior that is different from the other input sets. Three of these, namely
takr, browse and boyer, have a higher miss rate for larger D-caches, a higher percentage
shift operations, and a lower miss rate for the small I-caches. Two of these input sets,
namely puzzle0 and triang, have a higher I-cache miss rate (larger than 16KB), a higher
percentage arithmetic and logical operations, a lower percentage load/store operations, a
smaller number of instructions between two taken branches. The two remaining input sets
that show a different behavior from the other input sets, namely destru2 and destrum2,
have a low value along the third principal component. As such, we conclude that these
two inputs have a relatively high ILP, a relatively high percentage control operations, and a
relatively high branch prediction accuracy for the bimodal branch predictor. The remaining
five input sets show a similar behavior, namely dderiv, tak2, deriv, ctak and div2.

4.2.3 TPC-D

Based on Figure 7, we retained four principal components for postgres running 16 TPC-
D queries, accounting for 84.5% of the total variance; the first component accounts for
45.8% of the total variance and is positively dominated, see Figure 8, by the percentage
of arithmetic operations, the I-cache miss rate and the D-cache miss rate for small cache
sizes; and negatively dominated by the percentage of logical operations. The second com-
ponent accounts for 18.1% of the total variance and is positively dominated by the branch
prediction accuracy. The third component accounts for 12.1% of the total variance and is
negatively dominated by the D-cache miss rates for large cache sizes. The fourth component
accounts for 8.5% of the total variance and is positively dominated by the percentage of
shift operations and negatively dominated by the percentage memory operations.

Figure 9 shows the data points of postgres running the TPC-D queries in the 4-dimensional
space built up by these four components. To display this 4-dimensional space understand-
ably, we have shown the first principal component versus the second in one graph; and the

12



Quantifying the Impact of Input Data Sets on Program Behavior

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

number of principal components

p
e
rc

e
n
ta

g
e

v
a
ri
a
n
c
e

e
x
p
la

in
e
d

Figure 4: Amount of variance explained for li.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

IL
P

b
im

o
d

a
l
B

P

g
s
h

a
re

B
P

h
y
b

ri
d

B
P

ld
/s

t
o

p
s

a
ri

th
o

p
s

lo
g

o
p

s

s
h

if
t
o

p
s

c
tr

l
o

p
s

fl
o

w
b

re
a

k

I$
8

K
B

I$
1

6
K

B

I$
3

2
K

B

I$
6

4
K

B

I$
1

2
8

K
B

D
$

8
K

B

D
$

1
6

K
B

D
$

3
2

K
B

D
$

6
4

K
B

D
$

1
2

8
K

B

principal component 1

principal component 2

principal component 3

Figure 5: Factor loadings for li.

-2

-1

0

1

2

-2 -1 0 1 2

principal component 1

p
ri

n
c
ip

a
l
c
o

m
p

o
n

e
n

t
2

-2

-1

0

1

2

-2 -1 0 1 2

principal component 2

p
ri

n
c
ip

a
l
c
o

m
p

o
n

e
n

t
3takr

browse

boyer

puzzle0

triang

destru2ctak

deriv
div2

dderiv

puzzle0

triang
destru2

destrum2

deriv

ctak

dderiv boyer

browse

destrum2

tak2

takr
div2

tak2

Figure 6: Lisp interpreter.

13



Eeckhout, Vandierendonck & De Bosschere

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

number of principal components

p
e
rc

e
n
ta

g
e

v
a
ri
a
n
c
e

e
x
p
la

in
e
d

Figure 7: Amount of variance explained for postgres.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

IL
P

b
im

o
d

a
l
B

P

g
s
h

a
re

B
P

h
y
b

ri
d

B
P

ld
/s

t
o

p
s

a
ri

th
o

p
s

lo
g

o
p

s

s
h

if
t
o

p
s

c
tr

l
o

p
s

fl
o

w
b

re
a

k

I$
8

K
B

I$
1

6
K

B

I$
3

2
K

B

I$
6

4
K

B

I$
1

2
8

K
B

D
$

8
K

B

D
$

1
6

K
B

D
$

3
2

K
B

D
$

6
4

K
B

D
$

1
2

8
K

B

principal component 1

principal component 2

principal component 3

principal component 4

Figure 8: Factor loadings for postgres.

-3

-2

-1

0

1

2

-3 -2 -1 0 1 2

principal component 1

p
ri
n
c
ip

a
lc

o
m

p
o
n
e
n
t
2

-2

-1

0

1

2

3

-2 -1 0 1 2

principal component 3

p
ri
n
c
ip

a
lc

o
m

p
o
n
e
n
t
4

Q17

Q3

Q2Q4

Q6

Q10

Q16

Q5

Q9

Q8

Q7

Q10

Q3

Q2

Q16

Q9

Q8

Q7

Q5

Q6

Q4

Q17

Q14

Q13

Q15

Q12

Q11

Q14

Q13

Q12

Q15

Q11

Figure 9: Workload space for postgres: first component vs. second component (graph on
the left) and third vs. fourth component (graph on the right).

14



Quantifying the Impact of Input Data Sets on Program Behavior

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

number of principal components

p
e
rc

e
n
ta

g
e

v
a
ri
a
n
c
e

e
x
p
la

in
e
d

Figure 10: Amount of variance explained for all the program-input pairs.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

IL
P

b
im

o
d

a
l
B

P

g
s
h

a
re

B
P

h
y
b

ri
d

B
P

ld
/s

t
o

p
s

a
ri

th
o

p
s

lo
g

o
p

s

s
h

if
t
o

p
s

c
tr

l
o

p
s

fl
o

w
b

re
a

k

I$
8

K
B

I$
1

6
K

B

I$
3

2
K

B

I$
6

4
K

B

I$
1

2
8

K
B

D
$

8
K

B

D
$

1
6

K
B

D
$

3
2

K
B

D
$

6
4

K
B

D
$

1
2

8
K

B

principal component 1

principal component 2

principal component 3

principal component 4

Figure 11: Factor loadings for all the program-input pairs.

third versus the fourth in another graph. These graphs do not reveal a strong clustering
among the various queries. From this graph, we can also conclude that some queries ex-
hibit a significantly different behavior than the other queries. For example, queries 7 and 8
have significantly higher D-cache miss rates for large cache sizes. Query 16 has, along the
first principal component, a relatively low percentage arithmetic operations, relatively low
I-cache miss rates, relatively low D-cache miss rates for small cache sizes, and a relatively
high percentage logical operations; along the fourth principal component, query 16 has a
higher percentage of shift operations and a lower percentage of load/store operations.

4.2.4 Workload Space

Now we change the scope to the entire workload space, i.e., by considering all the 79
program-input pairs from Tables 1 and 2. Based on Figure 10, we retain four principal
components accounting for 89.5% of the total variance. The first component accounts for
29.7% of the total variance and is positively dominated, see Figure 11, by the number
of instructions between two taken branches; and negatively dominated by the percentage

15



Eeckhout, Vandierendonck & De Bosschere

control operations and the I-cache miss rates. The second principal component accounts for
28.0% of the total variance and is positively dominated by the amount of ILP and negatively
dominated by the branch prediction accuracy and the percentage of logical operations. The
third component accounts for 18.5% of the total variance and is positively dominated by
the percentage arithmetic operations and negatively dominated by the D-cache miss rates
for large cache sizes. The fourth component accounts for 13.3% of the total variance and is
positively dominated by the percentage shift operations and negatively dominated by the
percentage load/store operations.

The results of the analyses that were done on these data, are shown in Figures 12
to 14. Figure 12 represents the program-input pairs in the 4-dimensional workload space
built up by the four retained principal components. The dendrograms corresponding to the
cluster analyses are shown in Figures 13 and 14 using the complete linkage rule and the
weighted pair-group average linkage rule, respectively. Program-input pairs connected by
small linkage distances are clustered in early iterations of the analysis and thus, exhibit sim-
ilar behavior. Program-input pairs on the other hand, connected by large linkage distances
exhibit different behavior.

Isolated points. From the data presented in Figures 12 to 14, it is clear that benchmarks
go, ijpeg and compress are isolated in this 4-dimensional space. Indeed, in the dendrogram
shown in Figure 14, these three benchmarks are connected to the other benchmarks through
long linkage distances. E.g., go is connected to the other benchmarks with a linkage dis-
tance of 4.6 which is much larger than the linkage distance for more strongly clustered
pairs. An explanation for this phenomenon can be found in Figure 12. Indeed, for go the
discrimination is made along the second and third component. In other words, this is due
to its low branch prediction accuracy, its low percentage logical operations, its high amount
of ILP, its high percentage arithmetic operations, and its low D-cache miss rates for larger
cache sizes. Compress discriminates itself along the third component which is mainly due
to its high D-cache miss rates for large caches. For ijpeg, the different behavior is due to,
along the first and fourth component, the high percentage of arithmetic, shift and control
operations, the high number of instructions between two taken branches, the low percentage
of load/store and control operations, and the low I-cache miss rates.

Strong clusters. There are also several strong clusters which suggests that only a small
number (or in some cases, only one) of the input sets should be selected to represent the
whole cluster. This will ultimately reduce the total simulation time since only a few (or only
one) program-input pairs need to be simulated instead of all the pairs within that cluster.
We can identify several strong clusters:

• The data points corresponding to the gcc benchmark are strongly clustered, except for
the input sets emit-rtl, insn-emit and explow. These three input sets exhibit a different
behavior from the rest of the input sets. However, emit-rtl and insn-emit have a quite
similar behavior.

• The data points corresponding to the lisp interpreter li except for browse, boyer, takr,
triang and puzzle0 are strongly clustered as well. This can be clearly seen from Fig-
ures 13 and 14 where this group is clustered with a linkage distance that is smaller

16



Quantifying the Impact of Input Data Sets on Program Behavior

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

principal component 1

p
ri
n
c
ip

a
lc

o
m

p
o
n
e
n
t
2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

principal component 3

p
ri
n
c
ip

a
lc

o
m

p
o
n
e
n
t
4

Q17

gcc.insn-emit +
gcc.emit-rtl

Q3

Q’svortex.train

vortex.ref

gcc.explow

gcc

perl.scrabbl

m88ksim.ref

Q5

perl.jumble

perl.primes

m88ksim.train

go

ijpeg

compress

gcc.explow

compress.100,000

Q7
Q9

Q8

go.2stone9

m88ksim.train

perl.scrabblli.takr

li.browse

li.boyer

perl.primes

li.triang

li.puzzle0

li

500,000
1,000,000

Q9 + Q11

Q7

Q2
Q4

Q10

Q16

m88ksim.ref

Q’s
Q11

perl.jumble

gcc

go

go.2stone9

Q14

li

li.takrli.destrum2

compress.100,000

compress

500,000

1,000,000

Q14

Q17

Q3

gcc.insn-emit +
gcc.emit-rtl

ijpeg

Q16

Q5

Figure 12: Workload space for all the program-input pairs: first component vs. second
component (upper graph) and third vs. fourth component (bottom graph).

17



Eeckhout, Vandierendonck & De Bosschere

gcc

gcc.emit-rtl +
gcc.insn-emit

Q3 + Q11 + Q17

gcc.explow

compress
compress.100,000

Q2 + Q4 + Q10

Q6 + Q12-16

Q5 + m88ksim + vortex

Q8 + perl.jumble

ijpeg

li

li.takr + li.boyer + li.browse
perl.scrabbl

go

linkage distance

li.triang + li.puzzle0
+ perl.primes

0 1 2 3 4 5 6 7

Figure 13: Dendrogram obtained through cluster analysis using the complete linkage rule.
The thick vertical line shows the point where 16 clusters are formed (see sec-
tion 5.1).

0 1 2 3 4 5

gcc

gcc.emit-rtl +
gcc.insn-emit

Q3 + Q11 + Q17
Q7 + Q9

gcc.explow

compress
compress.100,000

Q2 + Q4 + Q10

Q6 + Q12-16

ijpeg

li + perl.primes

li.takr + li.boyer + li.browse

go

linkage distance

Q5 + Q8 + m88ksim.ref

m88ksim.train

perl.scrabbl

+ vortex + perl.jumble

0 1 2 3 4 5

Figure 14: Dendrogram obtained through cluster analysis using the weighted pair-group
average linkage rule. The thick vertical line shows the point where 16 clusters
are formed (see section 5.1).

18



Quantifying the Impact of Input Data Sets on Program Behavior

than 1. The three input sets browse, boyer and takr are grouped with the other li input
sets with a linkage distance that is much larger.

• All input sets for ijpeg result in similar program behavior since all input sets are
clustered in one group. An important conclusion from this analysis is that in spite
of the differences in image dimensions, ranging from small images (512x482) to large
images (2362x1570), the behavior of ijpeg remains quite the same.

• The input sets for compress are strongly clustered as well except for ‘100000 e 2231’.

Reference vs. train inputs. Along with its benchmark suite SPECint, SPEC releases
reference and train inputs. The purpose for the train inputs is to provide input sets that
should be used for profile-based compiler optimizations. The reference input is then used
for reporting results. Within the context of this paper, the availability of reference and train
input sets is important for two reasons. First, when reference and train inputs result in
similar program behavior we can expect that profile-driven optimizations will be effective.
Second, train inputs have smaller dynamic instruction counts which make them candidates
for more efficient simulation runs. I.e., when a train input exhibits a similar behavior as a
reference input, the train input can be used instead of the reference input for exploring the
design space which will lead to a more efficient design flow.

In this respect, we take the following conclusions:

• The train and reference input for vortex exhibit similar program behavior with a
linkage distance that is smaller than 0.4.

• For m88ksim on the other hand, this is less the case—the linkage distance is larger
than 1.

• For go, the train input ‘50 9 2stone9.in’ leads to a behavior that is slightly different
from the behavior of the reference inputs ‘50 21 9stone21.in’ and ‘50 21 5stone21.in’.
The two reference inputs on the other hand, lead to similar behavior.

• All three inputs for perl (two reference inputs and one train input) result in quite
different behavior.

From these observations, we can state that for some benchmarks the train input behaves
similarly to the reference input. For other benchmarks this might not be true. As such,
using train inputs when reporting performance results in architectural research might be
reliable in some cases and unreliable in other cases.

Reduced inputs. KleinOsowski et al. [16] propose to reduce the simulation time of bench-
marks by using reduced input sets. The final goal of their work is to identify a reduced
input for each benchmark that results in similar behavior as the reference input but with
a significant reduction in dynamic instruction counts and thus simulation time. From the
data in Figures 12 to 14, we can conclude that, e.g., for ijpeg this is a viable option since
small images result in quite similar behavior as large images. For compress on the other
hand, we have to be careful: the reduced input ‘100000 e 2231’ which was derived from
the reference input ‘14000000 e 2231’ results in quite different behavior. The other reduced
inputs for compress lead to a behavior that is similar to the reference input.

19



Eeckhout, Vandierendonck & De Bosschere

Impact of input set on program behavior. As stated before, this analysis is useful
for identifying the impact of input sets on program behavior. For example:

• The data points corresponding to postgres running the TPC-D queries are weakly
clustered. For example, the spread along the first principal component is very large.
As such, a wide range of different I-cache behavior can be observed when running
the TPC-D queries. Note also that all the queries result in an above-average branch
prediction accuracy, a high percentage of logical operations and low ILP (negative
value along the second principal component).

• The difference in behavior between the input sets for compress is mainly due to the
difference in the data cache miss rates (along the third principal component).

• In general, the variation between programs is larger than the variation between input
sets for the same program. Thus, when composing a workload, it is more important to
select different programs with a well chosen input set than to include various inputs for
the same program. For example, the program-input pairs for gcc (except for explow,
emit-rtl and insn-emit) and ijpeg are strongly clustered in the workload space. In some
cases however, for example postgres and perl, the input set has a relatively high impact
on program behavior.

4.3 Preliminary validation

As stated before, the purpose of the analysis presented in this paper is to identify clusters
of program-input pairs that exhibit similar behavior. We will show that pairs that are close
to each other in the workload space indeed exhibit similar behavior when changes are made
to the microarchitecture on which they run.

In this section, we present a preliminary validation in which we observe the behavior
of several input sets for gcc and one input set of each of the following benchmarks: go

and li. The reason for doing a validation using a selected number of program-input pairs
instead of all 79 program-input pairs is to limit simulation time. The simulations that
are presented in this section already took several weeks. As a consequence, simulating all
program-input pairs would have been impractically long2. However, since gcc presents a
very diverse behavior (strong clustering versus isolated points, see Figure 3), we believe that
a succesful validation on gcc with some additional program-input pairs can be extrapolated
to the complete workload space with confidence.

We have used seven input sets for gcc, namely explow, insn-recog, gcc, genoutput, stmt,
insn-emit and emit-rtl. According to the analysis done in section 4.2.1, emit-rtl and insn-emit

should exhibit a similar behavior; the same should be true for gcc, genoutput and stmt.
explow and insn-recog on the other hand, should result in a different program behavior since
they are quite far away from the other input sets that are selected for this analysis. For go

and li, we used 50 9 2stone9.in and boyer, respectively.

We used SimpleScalar v3.0 [17] for the Alpha architecture as simulation tool for this
analysis. The baseline architecture has a window size of 64 instructions and an issue width
of 4.

2. This is exactly the problem we are trying to solve.

20



Quantifying the Impact of Input Data Sets on Program Behavior

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

8KB,

DM

16KB,

DM

16KB,

2WSA

32KB,

DM

32KB,

2WSA

32KB,

4WSA

Instruction Cache

IP
C

explow

insn-recog

gcc

genoutput

stmt

insn-emit

emit-rtl

go

li

Figure 15: IPC as a function of the I-cache configuration; 16KB DM D-cache and 8K-entry
bimodal branch predictor.

1.3

1.4

1.5

1.6

1.7

1.8

1.9

8KB,

DM

16KB,

DM

16KB,

2WSA

32KB,

DM

32KB,

2WSA

32KB,

4WSA

Data Cache

IP
C

explow

insn-recog

gcc

genoutput

stmt

insn-emit

emit-rtl

go

li

Figure 16: IPC as a function of the D-cache configuration; 32KB DM I-cache and 8K-entry
bimodal branch predictor.

21



Eeckhout, Vandierendonck & De Bosschere

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

bimod

4K

bimod

8K

bimod

16K

gshare

8K

gshare

16K

hybrid,

8K

Branch predictor

IP
C

explow

insn-recog

gcc

genoutput

stmt

insn-emit

emit-rtl

go

li

Figure 17: IPC a function of the branch predictor configuration; 32KB DM I-cache and
32KB DM D-cache.

1

1.2

1.4

1.6

1.8

16/2 32/2 16/4 32/4 64/4 128/4 64/8 128/8

Window size / Issue width

re
la

ti
v
e

p
e
rf

o
rm

a
n
c
e

in
c
re

a
s
e explow

insn-recog

gcc

genoutput

stmt

insn-emit

emit-rtl

go

li

Figure 18: Performance increase w.r.t. the 16/2 configuration as a function of the window
size and the issue width; 32KB DM I-cache, 32KB DM D-cache and 8K-entry
branch predictor.

22



Quantifying the Impact of Input Data Sets on Program Behavior

In Figures 15, 16, 17 and 18, the number of instructions retired per cycle (IPC) is shown
as a function of the I-cache configuration, the D-cache configuration, the branch predictor
and the window size versus issue width configuration, respectively. We will first discuss the
results for gcc. Afterwards, we will detail on the other benchmarks.

For gcc, we clearly identify three groups of input sets that have similar behavior, namely
(i) explow and insn-recog, (ii) gcc, genoutput and stmt, and (iii) insn-emit and emit-rtl. For
example, in Figure 17, the branch behavior of group (i) is significantly different from the
other input sets. Or, in Figure 18, the scaling behavior as a function of window size and
issue width is quite different for all three groups. This could be expected for groups (ii) and
(iii) as discussed earlier. The fact that explow and insn-recog exhibit similar behavior on
the other hand, is unexpected since these two input sets are quite far away from each other
in the workload space, see Figure 3. Note that this reveals a property of this methodology
that was discussed is section 2, namely that not all program characteristics included in the
analysis may equally influence performance. This might lead to a discrimation of program-
input pairs on characteristics that have a minor impact on performance.

The other two benchmarks, go and li, clearly exhibit a different behavior on all four
graphs. This could be expected from the analysis done in section 4.2.4 since PCA and
cluster analysis pointed out that these benchmarks have a different behavior. Most of the
mutual differences can be explained from the analysis done in this paper. For example,
go has a different D-cache behavior than gcc which is clearly reflected in Figure 16. Also,
li has a different I-cache behavior than gcc and go which is reflected in Figure 15. Other
differences however, are more difficult to explain. Again, this phenomenon is due to the fact
that some microarchitectural parameters have a minor impact on performance for a given
microarchitectural configuration. However, for other microarchitectural configurations we
can still expect different behavior. For example, go has a different branch behavior than
gcc, according to the analysis done in section 4.2.4; in Figure 17, go and gcc exhibit a
comparable behavior.

5. Applications

As discussed in the introduction, the methodology presented so far has several interesting
applications. In section 4.2.4, we have extensively detailed on one particular application,
namely getting insight in the impact of input data sets on program behavior. As such,
we have also touched on its relationship with workload design, or the composition of a
representative workload while taking into account the total simulation time. In this section,
we will further detail on this important application by discussing (i) the selection of a
restricted number of representative program-input pairs and (ii) the use of this methodology
in the context of trace sampling.

5.1 Workload composition

Consider the case where we assume that all the 79 program-input pairs given in Tables 1
and 2 are representative for the target domain of operation. Obviously, simulating these
79 program-input pairs on an architectural simulator is infeasible. Indeed, the total dy-
namic instruction count of all these program-input pairs together exceeds 593 billions of
instructions, or 23 days of simulation when using SimpleScalars out-of-order simulator at a

23



Eeckhout, Vandierendonck & De Bosschere

cluster number benchmarks representative dyn (M)

1 5 Q2, Q4, Q7, Q9 and Q10 Q4 564

2 6 Q6 and Q12-Q16 Q13 325

3 3 Q3, Q11 and Q17 Q3 948

4 5 Q5, m88ksim and vortex vortex.train 3,244

5 2 Q8 and perl.jumble Q8 842

6 21 all the inputs associated with gcc except for gcc.protoize 298
insn-emit, emit-rtl and explow

7 2 gcc.emit-rtl and gcc.insn-emit gcc.emit-rtl 104

8 1 gcc.explow gcc.explow 225

9 7 all inputs associated with li except for takr, li.ctak 583
browse, boyer, triang and puzzle0

10 3 li.takr, li.browse and li.boyer li.browse 672

11 3 li.triang, li.puzzle0 and perl.primes li.puzzle0 2

12 5 all inputs associated with compress except for compress.1,000,000 4,342
compress.100,000

13 1 compress.100,000 compress.100,000 423

14 11 all inputs associated with ijpeg ijpeg.kitty 267

15 3 all inputs associated with go go.5stone21 35,329

16 1 perl.scrabbl perl.scrabbl 28,251

76,419

Table 3: Selecting a workload consisting of 16 program-input pairs: via complete linkage
cluster analysis.

cluster number benchmarks representative dyn (M)

1 3 Q2, Q4 and Q10 Q4 564

2 6 Q6 and Q12-Q16 Q13 325

3 6 Q5, Q8, perl.jumble, m88ksim.ref and vortex vortex.train 3,244

4 3 Q3, Q11 and Q17 Q3 948

5 2 Q7 and Q9 Q7 932

6 21 all the inputs associated with gcc except for gcc.protoize 298
insn-emit, emit-rtl and explow

7 2 gcc.emit-rtl and gcc.insn-emit gcc.emit-rtl 104

8 1 gcc.explow gcc.explow 225

9 10 all inputs associated with li except for takr, li.ctak 583
browse and boyer; perl.primes

10 3 li.takr, li.browse and li.boyer li.browse 672

11 5 all inputs associated with compress except for compress.1,000,000 4,342
compress.100,000

12 1 compress.100,000 compress.100,000 423

13 11 all inputs associated with ijpeg ijpeg.kitty 267

14 3 all inputs associated with go go.5stone21 35,329

15 1 m88ksim.train m88ksim.train 24,959

16 1 perl.scrabbl perl.scrabbl 28,251

101,366

Table 4: Selecting a workload consisting of 16 program-input pairs: via weighted pair-group
average linkage cluster analysis.

24



Quantifying the Impact of Input Data Sets on Program Behavior

cluster number benchmarks representative dyn (M)

1 5 Q2, Q4, Q10 and vortex Q4 564

2 6 Q6 and Q12-Q16 Q13 325

3 3 Q3, Q11 and Q17 Q3 948

4 2 Q7 and Q9 Q7 932

5 3 Q5, Q8 and perl.jumble Q8 842

6 2 perl.primes and perl.scrabbl perl.pimes 17,375

7 11 the following gcc inputs: emit-rtl, gcc, jump gcc.protoize 298
genoutput, genrecog, insn-emit, protoize

regclass, stmt, stmt-protoize and varasm

8 12 the following gcc inputs: amptjp, cccp, c-decl-s print-tree 136
cp-decl, dbxout, expr, insn-recog, integrate

print-tree, recog, reload1, toplev

9 1 gcc.explow gcc.explow 225

10 9 all inputs associated with li except for takr, li.ctak 583
browse and boyer

11 3 li.takr, li.browse and li.boyer li.browse 672

12 5 all inputs associated with compress except for compress.1,000,000 4,342
compress.100,000

13 1 compress.100,000 compress.100,000 423

14 11 all inputs associated with ijpeg ijpeg.kitty 267

15 3 all inputs associated with go go.5stone21 35,329

16 2 m88ksim.train and m88ksim.ref m88ksim.train 24,959

88,220

Table 5: Selecting a workload consisting of 16 program-input pairs: via K-means clustering.

speed of 300,000 instructions per second [18]. As such, three weeks of simulation yield us
a performance metric of one single microarchitectural design point. If we take into account
that a large number of design points need to be evaluated, we can conclude that this ap-
proach is impractical. One possible solution to this problem would be to run a huge number
of simulations in parallel on a huge number of machines. Since machines are quite cheap
nowadays, the equipment cost can be modest. However, the simulations might still be too
time-consuming. For example, simulating one single microarchitectural configuration using
the vortex.ref program-input pair, which has a dynamic instruction count of more than 92
billion instruction, still takes several days.

Therefore, we propose to reduce this large number of program-input pairs to a limited
number, say 16, in order to reduce the total simulation time. For this purpose, we can
apply the methodology presented in this paper. We have studied three possible clustering
strategies: (i) linkage clustering using the complete linkage rule (see Figure 13), (ii) link-
age clustering using the weighted pair-group average linkage rule (see Figure 14) and (iii)
K-means clustering with K set to 16. The reason why we consider three different clustering
strategies is to investigate how much the influence is of the applied clustering techniques
on the final result. The results of this experiment are shown in Tables 3 to 5. For each
cluster, the number of program-input pairs in each cluster is given, the program-input pairs
themselves, a representative for each cluster and the dynamic instruction count (in mil-
lions) for each representative. The representative for each cluster was chosen by taking the
program-input pair with the minimal dynamic instruction count that is as close as possible

25



Eeckhout, Vandierendonck & De Bosschere

to the center of the cluster it belongs to. Another approach that can be used is to pick
a limited number of extreme program-input pairs for each cluster—an extreme point in a
cluster is a point that is situated at the ‘boundary’ of the cluster. The rationale behind
this approach would be that the behavior of program-input pairs in the middle of a cluster
can be extracted from the behavior of the extremes, for example through interpolation. In
this paper, we did take the latter approach because we believe that processor performance
of a program-input pair in the middle of a cluster cannot be accurately estimated by using
extremes and interpolation because determining the interpolation curve is extremely diffi-
cult. The reason for this is that the influence of a program characteristic in one processor
configuration can be completely different from the influence in case of another processor
configuration. For this reason, we used the first approach, namely selecting a representative
that is close enough to the center of its cluster.

We can make several interesting observations from Tables 3 to 5:

• the TPC-D queries are spread over 5 clusters. As discussed previously, this comes
from the fact that the input set has a large impact on program behavior for postgres;

• the inputs for gcc also result in a spreading over multiple clusters. The two linkage
clustering techniques, Tables 3 and 4, group all the input sets of gcc together except
for the three inputs, insn-emit, emit-rtl and explow. The K-means clustering approach,
see Table 5 divides gcc into two major clusters plus a cluster containing only explow.
Roughly, we can state that these two major clusters correspond to the left part and
the right part of the graph in Figure 3.

• several SPECint95 benchmarks are often classified with TPC-D queries. For example,
vortex is classified with TPC-D queries Q2, Q4 and Q10 by the K-means cluster-
ing technique, see Table 5. The SPECint95 benchmarks perl and m88ksim are often
classified with Q5 and Q8, although slightly different under the various clustering
strategies.

• in case of, e.g., the complete linkage clustering, the total dynamic instruction count
is reduced by a factor 7.8.

Note that in general the classifications made by the three clustering approaches are
quite consistent. Indeed, most clusters occur in all three classifications. However, there
are a number of program-input pairs that are classified in slightly different ways under the
various clustering techniques. This is due to the fact that these program-input pairs are
borderline cases that are somehow difficult to classify.

5.2 Trace sampling

Another interesting approach to the simulation problem is trace sampling [4, 5, 6, 7, 8, 9,
10, 11]. In trace sampling, several samples are taken from a program execution so that
the total number of instructions in the samples is significantly less than the total number
of instructions of a complete execution. In order to make viable design decisions based on
these sampled traces, a sampled trace should be representative for the complete program
execution. The methodology presented here could also be used to validate sampled traces.

26



Quantifying the Impact of Input Data Sets on Program Behavior

-2

-1

0

1

2

-2 -1 0 1 2

principal component 1

p
ri

n
c
ip

a
l
c
o

m
p

o
n

e
n

t
2

sampled Q16

Q16

m88ksim.train

m88ksim.ref
m88ksim.sampled

vortex.ref

vortex.train

vortex.sampled

compress.100,000

compress.other inputs

go.2stone9

go.ref

go.10%-sampled

go.1%-and
0.1%-sampled

compress.10%-sampled
compress.1%-sampled

compress.0.1%-sampled

Figure 19: Workload space for the six long running program-input pairs and their sampled
traces.

Indeed, a sampled trace that is situated close to its reference trace in the workload space
could be considered as being representative.

To demonstrate the applicability of the methodology presented in this paper for trace
sampling, we have set up the following experiment. We have considered sampled traces for
six long running program-input pairs: Q16, m88ksim.ref, vortex.ref, compress, go.5stone21

and go.9stone21. For each of these program-input pairs, we have considered three sampled
traces, with a sampling rate of 10%, 1% and 0.1%, respectively. This was done by taking
samples of 1 million instructions every 10 million, 100 million and 1 billion instructions,
respectively. Note that we assume a perfect warmup, i.e., perfectly warmed-up caches and
perfectly warmed-up branch predictors, at the beginning of each sample. As such, we focus
on the representativeness of the sampled traces.

For each of these sampled traces we have measured the program characteristics as men-
tioned in section 2. Subsequently, we have done a principal components analysis. The
2-dimensional space that results from this analysis is displayed in Figure 19. The total
variance accounted for by the two principal components is 84.1%; the first principal compo-
nent accounts for 56.6% and the second component accounts for 27.6%. Several interesting
conclusions can be taken from this graph. First, as expected, the sampled trace with a
sampling rate of 10% is closer to the reference input than the 1% and the 0.1% sampled
traces in general, see for example go and compress. Second, in some cases a sampled trace
seems to be a better option than a reduced input, e.g., for m88ksim the sampled traces are
closer to the reference input than the train input. On the other hand, this seems not to be
true for go; indeed, the train input 2stone9 is closer to the reference inputs than the sampled
traces. Third, in some cases, e.g., for TPC-D query Q16, the 0.1% sampled trace seems to
be nearly as representative as the 10% sampled trace. In conclusion, we can state that the

27



Eeckhout, Vandierendonck & De Bosschere

methodology presented in this paper can be useful for measuring the representativeness of
sampled traces.

6. Related work

Saavedra and Smith [19] addressed the problem of measuring benchmark similarity. For
this purpose they presented a metric that is based on dynamic program characteristics for
the Fortran language, for example the instruction mix, the number of function calls, the
number of address computations, etc. For measuring the difference between benchmarks
they used the squared Euclidean distance. The methodology in this paper differs from the
one presented by Saavedra and Smith [19] for two reasons. First, the program characteristics
measured here are more suited for performance prediction of contemporary architectures
since we include branch prediction accuracy, cache miss rates, ILP, etc. Second, we prefer
to work with uncorrelated program characteristics (obtained after PCA) for quantifying
differences between program-input pairs, as extensively argued in section 3.3.

Hsu et al. [20] studied the impact of input data sets on program behavior using high-
level metrics, such as procedure level profiles and IPC, as well as low-level metrics, such as
the execution paths leading to data cache misses. They conclude that the test input set
as provided by SPEC is not suitable for simulation purposes because the execution profile
is quite different from the profile obtained from the reference input. The train input was
found to be better than the test input. However, they observed that the execution paths
leading to data cache misses are very different between the train input and the reference
input.

Yi, Lilja and Hawkins [21] propose a technique for classifying benchmarks with similar
behavior, i.e., by grouping benchmarks that stress the same processor components to similar
degrees. Their method is based on a Plackett-Burman design.

KleinOsowski et al.[16] propose to reduce the simulation time of the SPEC 2000 bench-
mark suite by using reduced input data sets. Instead of using the reference input data sets
provided by SPEC, which result in unreasonably long simulation times, they propose to
use smaller input data sets that accurately reflect the behavior of the full reference input
sets. For determining whether two input sets result in more or less the same behavior, they
used the chi-squared statistic based on the function-level execution profiles for each input
set. Note that a resemblance of function-level execution profiles does not necessarily imply
a resemblance of other program characteristics which are probably more directly related
to performance, such as instruction mix, cache behavior, etc. The latter approach was
taken in this paper for exactly that reason. KleinOsowski et al. also recognized that this
is a potential problem. The methodology presented in this paper can be used as well for
selecting reduced input data sets. A reference input set and a resembling reduced input
set will be situated close to each other in the q-dimensional space built up by the principal
components.

As discussed in section 5.2, trace sampling is also closely related to the topic of this
paper. Iyengar et al. [6] propose an R-metric for measuring the representativeness of a sam-
pled trace. Lafage and Seznec [8] propose to choose representative samples using cluster
analysis. They applied their method for data cache simulations. Characterizing the indi-
vidual samples is done using two microarchitecture-independent metrics, one that captures

28



Quantifying the Impact of Input Data Sets on Program Behavior

the temporal locality of the memory reference stream and one that captures the spatial
locality of the memory reference stream. Recently, Sherwood et al. [10, 11] characterize the
large scale behavior (as seen over billions of instructions) of computer programs using one
microarchitecture-independent metric, namely the Basic Block Vector. In essence, the BBV
quantifies the basic block execution profile. By measuring a BBV for each program slice
(containing for example 100 million instructions) the various program slices can be char-
acterized. Subsequently, the program slices with similar BBVs and thus similar behavior
are grouped together through clustering. For each cluster, a representative sample can be
chosen that can be used for trace sampling.

Trace sampling and reduced input sets are compared in [22]. The authors conclude,
completely consistent with our conclusions made in section 5.2, that both approaches can
lead to significant prediction errors when compared to the execution of the reference input.
However, both approaches have their own benefits. Reduced inputs allow the execution of
a program from the beginning to the end; trace sampling allows flexibility by varying the
sample rate, the sample length, the number of samples, etc.

Recently, a new fast simulation technique was introduced, namely statistical simula-
tion [23, 24, 25, 26]. In statistical simulation, a statistical profile is extracted from a program
execution which is subsequently fed into a synthetic trace generator. The synthetic trace
being generated can then be executed on a trace-driven simulator which yields performance
estimates. Due to the statistical nature of the technique, the total number of instructions
in a synthetic trace can be limited since the performance characteristics while simulating
a synthetic trace quickly converge. Typically, no more than one million instructions need
to be simulated to obtain a stable performance estimate. Statistical simulation is related
to the research topic presented in this paper, since the success of both techniques relies on
choosing relevant program characteristics to be incorporated in the analysis. For statistical
simulation, relevant program characteristics are needed to obtain a high accuracy; for the
technique presented in this paper, relevant program characteristics are needed to construct
a reliable workload space reduction.

Another possible application of using a data reduction technique such as principal com-
ponents analysis, is to compare different workloads. In [27], Chow et al. used PCA to
compare the branch behavior of Java and non-Java workloads. The interesting aspect of
using PCA in this context is that PCA is able to identify why two workloads differ. This
can be done by analyzing the principal components. They conclude for example that Java
workloads tend to have more indirect calls while non-Java workloads tend to have more
direct and indirect jumps.

Huang and Shen [28] quantify the impact of input data sets on the bandwidth spec-
trum of computer programs. The bandwidth spectrum measures the average bandwidth
requirements of a program’s instruction and data stream as a function of the available local
memory. They conclude that the basic shape of the bandwidth spectrum does not change
much with varying inputs.

Changes in program behavior due to different input data sets are also important for
profile-guided compilation [29], where profiling information from a past run is used by the
compiler to guide its optimizations. Fisher and Freudenberger [30] studied whether branch
directions from previous runs of a program (using different input sets) are good predictors
of the branch directions in future runs. Their study concludes that branches generally take

29



Eeckhout, Vandierendonck & De Bosschere

the same directions in different runs of a program. However, they warn that some runs of
a program exercise entirely different parts of the program. Hence, these runs cannot be
used to make predictions about each other. By using the average branch direction over a
number of runs, this problem can be avoided. Wall [31] studied several types of profiles such
as basic block counts and the number of references to global variables. He measured the
usefulness of a profile as the speedup obtained when that profile is used in a profile-guided
compiler optimization. Seemingly, the best results are obtained when the same input is
used for profiling and measuring the speedup. This implies that every input is different in
some sense and leads to different compiler optimizations.

7. Conclusion

In microprocessor design, it is important to have a representative workload to make correct
design decisions. This paper proposes the use of principal components analysis and cluster
analysis to efficiently explore the workload space. In this workload space, benchmark-
input pairs can be displayed and a distance can be computed that gives us an idea of
the behavioral differences between these benchmark-input pairs. This representation can
be used to measure the impact of input data sets on program behavior. In addition, our
methodology was succesfully validated by showing that program-input pairs that are close to
each other in the principal components space, indeed exhibit similar behavior as a function of
microarchitectural changes. Interesting applications for this technique are the composition
of workloads and the validation of sampled traces.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments which
definitely improved the quality of the paper. Lieven Eeckhout and Hans Vandierendonck
are supported by a grant from the Flemish Institute for the Promotion of the Scientific-
Technological Research in the Industry (IWT).

References

[1] P. Bose and T. M. Conte, “Performance analysis and its impact on design,” IEEE
Computer, vol. 31, pp. 41–49, May 1998.

[2] L. K. John, P. Vasudevan, and J. Sabarinathan, “Workload characterization: Motiva-
tion, goals and methodology,” in Workload Characterization: Methodology and Case
Studies (L. K. John and A. M. G. Maynard, eds.), IEEE Computer Society, 1999.

[3] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Workload design: Selecting
representative program-input pairs,” in Proceedings of the 2002 International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT-2002), pp. 83–94,
Sept. 2002.

[4] T. M. Conte, M. A. Hirsch, and K. N. Menezes, “Reducing state loss for effective
trace sampling of superscalar processors,” in Proceedings of the 1996 International
Conference on Computer Design (ICCD-96), pp. 468–477, Oct. 1996.

30



Quantifying the Impact of Input Data Sets on Program Behavior

[5] P. K. Dubey and R. Nair, “Profile-driven sampled trace generation,” Tech. Rep. RC
20041, IBM Research Division, T. J. Watson Research Center, Apr. 1995.

[6] V. S. Iyengar, L. H. Trevillyan, and P. Bose, “Representative traces for processor
models with infinite cache,” in Proceedings of the Second International Symposium on
High-Performance Computer Architecture (HPCA-2), pp. 62–73, Feb. 1996.

[7] R. E. Kessler, M. D. Hill, and D. A. Wood, “A comparison of trace-sampling techniques
for multi-megabyte caches,” IEEE Transactions on Computers, vol. 43, pp. 664–675,
June 1994.

[8] T. Lafage and A. Seznec, “Choosing representative slices of program execution for
microarchitecture simulations: A preliminary application to the data stream,” in IEEE
3rd Annual Workshop on Workload Characterization (WWC-2000) held in conjunction
with the International Conference on Computer Design (ICCD-2000), Sept. 2000.

[9] G. Lauterbach, “Accelerating architectural simulation by parallel execution of trace
samples,” Tech. Rep. SMLI TR-93-22, Sun Microsystems Laboratories Inc., Dec. 1993.

[10] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution analysis to find
periodic behavior and simulation points in applications,” in Proceedings of the 2001 In-
ternational Conference on Parallel Architectures and Compilation Techniques (PACT-
2001), pp. 3–14, Sept. 2001.

[11] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically characterizing
large scale program behavior,” in Proceedings of the Tenth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-
X), pp. 45–57, Oct. 2002.

[12] S. McFarling, “Combining branch predictors,” Tech. Rep. WRL TN-36, Digital West-
ern Research Laboratory, June 1993.

[13] B. F. J. Manly, Multivariate Statistical Methods: A primer. Chapman & Hall, sec-
ond ed., 1994.

[14] A. Srivastava and A. Eustace, “ATOM: A system for building customized program
analysis tools,” Tech. Rep. 94/2, Western Research Lab, Compaq, Mar. 1994.

[15] StatSoft, Inc. STATISTICA for Windows. Computer program manual. 1999.
http://www.statsoft.com.

[16] A. J. KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja, “Adapting the SPEC 2000
benchmark suite for simulation-based computer architecture research,” in Workload
Characterization of Emerging Computer Applications, Proceedings of the IEEE 3rd
Annual Workshop on Workload Characterization (WWC-2000) held in conjunction
with the International Conference on Computer Design (ICCD-2000), pp. 83–100, Sept.
2000.

[17] D. C. Burger and T. M. Austin, “The SimpleScalar Tool Set.” Computer Architecture
News, 1997. See also http://www.simplescalar.com for more information.

31



Eeckhout, Vandierendonck & De Bosschere

[18] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for computer
system modeling,” IEEE Computer, vol. 35, pp. 59–67, Feb. 2002.

[19] R. H. Saavedra and A. J. Smith, “Analysis of benchmark characteristics and benchmark
performance prediction,” ACM Transactions on Computer Systems, vol. 14, pp. 344–
384, Nov. 1996.

[20] W. C. Hsu, H. Chen, P. Y. Yew, and D.-Y. Chen, “On the predictability of program
behavior using different input data sets,” in Proceedings of the Sixth Workshop on In-
teraction between Compilers and Computer Architectures (INTERACT 2002), held in
conjunction with the Eighth International Symposium on High-Performance Computer
Architecture (HPCA-8), pp. 45–53, Feb. 2002.

[21] J. J. Yi, D. L. Lilja, and D. M. Hawkins, “A statistically rigorous approach for improv-
ing simulation methodology,” in Proceedings of the Ninth International Symposium on
High Performance Computer Architecture (HPCA-9), Feb. 2003.

[22] J. W. Haskins Jr., K. Skadron, A. J. KleinOsowski, and D. J. Lilja, “Techniques for ac-
curate, accelerated processor simulation: An analysis of reduced inputs and sampling,”
Tech. Rep. CS-2002-01, University of Virginia—Dept. of Computer Science, Jan. 2002.

[23] L. Eeckhout and K. De Bosschere, “Hybrid analytical-statistical modeling for efficiently
exploring architecture and workload design spaces,” in Proceedings of the 2001 Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT-2001),
pp. 25–34, Sept. 2001.

[24] D. B. Noonburg and J. P. Shen, “A framework for statistical modeling of superscalar
processor performance,” in Proceedings of the third International Symposium on High-
Performance Computer Architecture (HPCA-3), pp. 298–309, Feb. 1997.

[25] S. Nussbaum and J. E. Smith, “Modeling superscalar processors via statistical simu-
lation,” in Proceedings of the 2001 International Conference on Parallel Architectures
and Compilation Techniques (PACT-2001), pp. 15–24, Sept. 2001.

[26] M. Oskin, F. T. Chong, and M. Farrens, “HLS: Combining statistical and symbolic
simulation to guide microprocessor design,” in Proceedings of the 27th Annual Inter-
national Symposium on Computer Architecture (ISCA-27), pp. 71–82, June 2000.

[27] K. Chow, A. Wright, and K. Lai, “Characterization of Java workloads by principal com-
ponents analysis and indirect branches,” in Proceedings of the Workshop on Workload
Characterization (WWC-1998), held in conjunction with the 31st Annual ACM/IEEE
International Symposium on Microarchitecture (MICRO-31), pp. 11–19, Nov. 1998.

[28] A. S. Huang and J. P. Shen, “The intrinsic bandwidth requirements of ordinary pro-
grams,” in Proceedings of the Seventh International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS-VII), pp. 105–114,
Oct. 1996.

32



Quantifying the Impact of Input Data Sets on Program Behavior

[29] M. D. Smith, “Overcoming the challenges to feedback-directed optimization (keynote
talk),” in Proceedings of ACM SIGPLAN Workshop on Dynamic and Adaptive Com-
pilation and Optimization, pp. 1–11, 2000.

[30] J. Fisher and S. Freudenberger, “Predicting conditional branch directions from previous
runs of a program,” in Proc. of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-V), pp. 85–95,
1992.

[31] D. W. Wall, “Predicting program behavior using real or estimated profiles,” in Pro-
ceedings of the 1991 International Conference on Programming Language Design and
Implementation (PLDI-1991), pp. 59–70, 1991.

33


