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Abstract 
We identify that a set of multimedia applications exhibit highly regular read-after-read (RAR)

and read-after-write (RAW) memory dependence streams. We exploit this regularity to predict
both RAW and RAR memory dependences. We also study how two previously proposed memory
dependence prediction-based memory latency reduction techniques perform for this multimedia
workload. In the first technique, a load can obtain a value by simply naming a preceding load (or
store) with which a RAR (or RAW) dependence is predicted. The second technique speculatively
converts a series of LOAD1-USE1,...,LOADN-USEN (or DEF-STORE-LOAD-USE) chains into a single
LOAD1-USE1...USEN (or DEF-USE) producer/consumer graph. We show that via memory
dependence prediction it is possible to correctly predict 33.3% of all loads on the average.
Moreover, the two memory dependence prediction based techniques result on average
performance improvements of 2.6% over a highly-aggressive, out-of-order, superscalar
processor. The actual range of performance improvements is 0% to 8.5%. When cache latency is
increased from 2 to 3 cycles, performance improves by 3.75% on average, with the range being
0% to 16.35%.

1  Introduction
Modern high-performance processors exploit regularities in “typical” program behavior. Exten-

sively studied examples include caching, branch prediction and value prediction. This experience
points to a possible direction for further performance improvements: identifying currently
unknown regularities in program behavior and exploiting these regularities to our advantage. Fol-
lowing this rationale, in previous work we have identified that typical programs exhibit highly reg-
ular “read-after-read” (RAR) and “read-after-write” (RAW) memory dependence streams [15,16]. 

 To exploit this regularity we have presented: (1) history-based memory dependence prediction
for both RAR and RAW dependences, and (2) two techniques that use this prediction to reduce
memory latency. In memory dependence prediction an earlier detection of a RAR or RAW depen-
dence is used to predict the dependence the next time the same loads or stores are encountered. In
speculative memory cloaking (cloaking for short - Figure 1, part (a)), we used this prediction to
create a new name space through which loads can get speculative values. This is done by predict-
ing a preceding load or store with which a dependence may exist. Using PC-based prediction this
identification takes place early in the pipeline without actual knowledge of memory addresses.
Further reduction in load latency is possible with speculative memory bypassing (bypassing for
short - Figure 1, part (b)). In this technique, we use RAW memory dependence prediction to trans-
form DEF-STORE-LOAD-USE chains into a direct, albeit speculative, DEF-USE ones.  Bypassing can
also exploit RAR memory dependence prediction. In this case, we transform a number of LOAD1-
USE1,...,LOADN-USEN chains into a single, yet speculative LOAD1-USE1...USEN producer/consumer
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graph. Consequently, the first load can propagate its value to the consumers of all its RAR depen-
dent loads. 

In our previous work we have focused on applications from traditional, general purpose
(SPECINT95) and numerical application domains (SPECFP95). These applications included compil-
ers, interpreters, CPU simulators, scripting languages, a database system, and simulators of physi-
cal phenomena. With the probable exception of the physical phenomena simulators, the
aforementioned applications typically exhibit relatively fairly high rates of short-distance (in time)
memory dependences. However, we are currently experiencing a proliferation of multimedia ori-
ented applications which are emerging as an equally important class of applications. Accordingly,
in this work, we investigate memory dependence behavior and cloaking and bypassing on a suite
of multimedia programs. Specifically, we focus on the Mediabench application suite [8] and on a
3D gaming application (doom from idSoftware). The Mediabench applications include speech,
video and image coders/encoders, a postscript interpreter and a set cryptography applications.

We demonstrate that the memory dependence stream of these multimedia applications is also
very regular. Moreover, we show that combined, cloaking and bypassing can offer often significant
performance benefits.

The rest of this paper is organized as follows: In Section 2, we provide additional information on
the benchmarks we used. In Section 3 we demonstrate that these multimedia programs exhibit reg-
ular RAW and RAR memory dependence streams. In Section 4 we comment on the rationale for
cloaking and bypassing. In Section 5 we review related work. In Section 6 we evaluate the accu-
racy and performance cloaking and bypassing. Finally, in Section 7 we summarize our findings.
For clarity we use the terms dependence and memory dependence interchangeably.

2  Benchmarks
We have used benchmarks from the Mediabench suite [8] and the 3D action game DOOM from

idSoftware. All programs were compiled for the MIPS-I architecture using GNU’s gcc compiler
version 2.7.2 (flags: -O2 -funroll-loops -finline-functions). Table 2.1 reports the dynamic instruc-
tion count (“IC” column) per program, along with the fractions of loads and stores. For clarity, we
use abbreviated names when referring to individual benchmarks. These names are shown under the
“Ab.” column. Adpcm, epic, g721 and gsm are all audio processing programs. For all of them, two
versions are provided, one for encoding and one for decoding. Ghostscript, is a postscript inter-
preter. Jpeg is an image encoder/decoder. Mpeg2 is a video encoder/decoder. Pegwit is an encryp-
tion/decryption application. Finally, rasta is a feature extraction for speech recognition. Doom, is a
3D action game. It takes a 3D model of a virtual world along with user input and produces a first-

Figure 1: Speculative Memory Cloaking and Bypassing. (a) Exploiting RAW dependences. (b) 
Exploiting RAR dependences.
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person view of the worlds based on the player’s actions. Along with the player, several other com-
puter-controlled players (often called bots) along with various other moving objects are simulated.
Texture mapping is used extensively in Doom. While Doom is an interactive application, it pro-
vides a demo facility. We exploited this option during our simulations.

For most programs we have used the data inputs provided with the Mediabench suite. For jpeg
encode and decode we used a different image to increase the dynamic instruction count. For ghost-
script we used the BIT output device as opposed to the default PPM device. PPM outputs a ‘0’ or
an ‘1’ character per printed pixel. As a result a significant fraction of the execution time is spent in
printing these characters. The BIT produces raw binary output which is closer to what a regular
printer or graphics device would require. For mpeg2 encode, we  reduced the input to 3 frames in
order to obtain reasonable simulation times. For DOOM, we have simulated video memory writes
by allocating a non-cacheable memory array. Moreover, we have removed all sound related code as
it translates to direct calls to DMA hardware which we do not currently simulate. 

3  Memory Dependence Stream Regularity Analysis
In this section, we demonstrate that the dependence stream of the multimedia programs

described earlier is regular. Specifically, we show that most loads exhibit temporal locality in their
RAR- and RAW-dependence streams. That is, once a load (as identified by its instruction address)
experiences a RAR or RAW dependence, chances are that it will experience the same RAR or
RAW dependence again soon. Moreover, we demonstrate that the working set of dependences per
load is relatively small. These properties enable history-based prediction of RAR and RAW depen-
dences. Our goal here is not to propose a specific optimization that exploits this regularity. Rather,
we are interested in demonstrating that this regularity exists. In the Sections that follow we present

Program Ab. IC Loads Stores SR
Mediabench

adpcm decode adD 5.4 6.8% 2.7% N/A
adpcm encode adE 6.6 6.7% 1.1% N/A
epic decode epD 6.1 15.0% 13.4% N/A
epic encode epE 53.0 12.4% 1.6% N/A
g721 decode g7D 256.9 15.0% 6.8% 1:2
g721 encode g7E 271.7 14.5% 6.6% 1:2
ghostscript gs 92.1 24.5% 12.1% N/A
gsm decode gmD 73.1 7.4% 4.1% N/A
gsm encode gmE 231.1 17.0% 4.5% 1:2
jpeg decode jpD 33.7 18.6% 12.0% N/A
jpeg encode jpE 15.3 24.1% 8.4% N/A
mpeg2 decode mgD 170.6 23.5% 4.6% 1:1
mpeg2 encode mgE 410.7 28.1% 2.8% 1:3
pegwit decode pwD 19.2 20.7% 6.9% N/A
pegwit encode pwE 33.9 18.7% 6.7% N/A
rasta ras 31.7 34.3% 8.4% N/A

Other
doom dom 343.5 29.2% 8.2% 1:2

Table 2.1: Benchmark Execution Characteristics. Instruction counts (“IC” column) are in
millions. (The “SR” column reports the timing to functional sampling ration we used during our
timing experiments. See Section 6 for a detailed description.)



MOSHOVOS & SOHI

two techniques that exploit this regularity to reduce memory latency. Other ways of exploiting this
regularity in multimedia program behavior may be possible.

We represent RAR dependences as (PC1, PC2) pairs where PC1 and PC2 are instruction addresses
of RAR-dependent loads. Generally, given a set of loads that access the same memory address,
RAR dependences exist between any pair of loads in program order (provided of course that no
intervening store writes to the same address). We restrict our attention to RAR dependences
between the earliest in program order load (source) and any of the subsequent loads (sinks). For
example, given the sequence LD1 A, LD2 A, LD3 A, we will account for the (LD1 A, LD2 A) and (LD1
A, LD3 A) dependences only and not for the (LD2 A, LD3 A) dependence. This definition is conve-
nient for RAR dependence prediction and for its applications we present in Section 4 as it allows
us to keep track of a single RAR dependence per executed load (ignoring data granularity). We use
a similar methodology for RAW dependences, which we represent as (STORE PC, LOAD PC) pairs. If
a load has both RAW and RAR dependences (e.g., in the sequence ST, LD1,LD2,  LD2 has both a
RAW and RAR dependence) we account for both dependences separately. Finally, in our experi-
ments we take into account data access granularity. For example, we will keep track of all four
memory dependences in the sequence STBYTEA, STBYTEA+1, STBYTEA+2, STBYTEA+3, LDWORDA (each
of the four stores writes a separate byte of the four-byte wide word read by the last load). 

To show that dependence streams are regular we measure the memory dependence locality of
loads with RAR dependences and that of loads with RAW dependences. We define memory-depen-
dence-locality-RAR(n) as the probability that the same RAR dependence has been encountered

Figure 2: Memory Dependence Locality of RAR (parts (a) and (b)) and RAW (parts (c) and (d)) 
dependences (range: 1 to 4). Address window size: (a)&(c) Infinite, (b)&(d) 4K entry.
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within the last n unique RAR dependences experienced by preceding executions of the same static
load. Memory-dependence-locality(1) is the probability that the same RAR dependence is experi-
enced in two consecutive executions of this load. A high value of memory-dependence-locality(1)
suggests that a simple, “last RAR dependence encountered”-based predictor will be highly accu-
rate. For values of n greater than 1, memory-dependence-locality(n) is a metric of the working set
of RAR memory dependences per static load. Of course, a small working set does not imply regu-
larity. We define memory-dependence-locality-RAW(n) similarly. We should emphasize that mem-
ory-dependence-locality is a relative metric measured as a percentage of loads that experience
dependences of a specific type. It is not a percentage over all loads.

Figure 2, part (a) shows locality results for sink loads of RAR dependences. Given a (source,
sink) RAR dependence we define the source to be the earliest in program order load. From our def-
inition of RAR dependences it follows that sink loads will typically have a single source load
(unless they access a wider data type). The locality range (value of n) shown is 1 to 4 (left to right).
The Y axis reports fractions over all sink loads executed. Locality is high for all programs. With
the exception of gsm-decode (gmD) and jpeg-decode (jpD), more than 80% of all loads with a
RAR dependence experience the same RAR dependence as last time they were executed. Locality
is also strong in gsm-decode when the last 2 RAR dependences per load are considered. Figure 2,
part (c) shows locality results for loads with RAW dependences. With the exception of jpeg-
decode, locality is above 60% when only the last RAW dependence is considered. When the last 4
RAW dependences per load are considered locality improves to above 80%.

We also measured how locality would change had we placed a restriction on how far back we
could search to find the earliest source load for RAR dependences or store for RAW dependences.
Such a restriction is interesting from the perspective of history-based prediction as we need a
mechanism to detect RAR and RAW dependences. To be of practical use this mechanism will have
to be of finite size. Accordingly, we include locality measurements for an address window of 4K.
We define an address window of size s to be the maximum number of unique addresses that can be
accessed between a source and a sink load. The intuition behind this metric is a table tracking the s
most recent addresses accessed can be used to detect memory dependences. As seen by the results
of Figure 2, part (b), RAR dependence locality is high, in some cases higher than it was when all
accesses were considered. This implies that shorter RAR-dependences seem to be more regular
that distant ones. For example, RAR-dependence locality in jpeg-decode is now close to 90%. The
same trend applies to RAW dependences as can be seen in part (d).  The only exception is jpeg-
decode where locality(1)s drops with the shorter address window (the absolute number of RAW
dependences also drops). In this program, short-distance memory dependences are less regular
than long-distance ones.

4  Speculative Memory Cloaking and Bypassing
We start by briefly reviewing cloaking and bypassing. Additional information can be found in

[15,16,17]. 

 Memory can be viewed as an interface that programs use to express desired actions. Viewing
memory as an interface allows us to separate specification from implementation: just because we
have chosen to express an action via memory we do not have to implement it the exact same way.
The recently proposed cloaking and bypassing methods approached memory as way of specifying
inter-operation communication, that is of passing values from stores to dependent loads [15]. This
specification is implicit and it introduces overheads which are not inherent to communication:
address calculation and disambiguation. Unfortunately, caching, the current method of choice for
speeding-up memory communication, cannot reduce these overheads. Moreover, these overheads
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may increase as pipelines grow deeper and as windows get wider. Fortunately, we can eliminate
these overheards if we express memory communication explicitly. In an explicit specification the
load and the store are given knowledge of the communication that has to occur so that they can
locate each other directly. Cloaking uses RAW memory dependence prediction to create this repre-
sentation on-the-fly in a program transparent way. Further reduction in communication latency is
possible if we observe that dependent stores and loads do not change the communicated value
(ignoring sign-extension and data-type issues). They are simply used simply to pass a value that
some other instruction (producer) creates to some other instruction(s) that consumes it. Bypassing
extends cloaking by linking actual producers and their consuming instructions directly. The effect
of RAW-based cloaking and bypassing is shown in Figure 1, part (a)

Following a similar line of thinking, we can observe that another common use of memory is
data-sharing, that is to hold data that is read repeatedly. Data-sharing is also expressed implicitly
and similar overheads are introduced. As with memory communication, an explicit representation
of data-sharing can eliminate the aforementioned overheads. The effect of  RAR-based cloaking
and bypassing is illustrated in Figure 1, part (b).

4.1  Speculative Memory Cloaking
In this section we review how we use RAW memory dependence prediction to streamline mem-

ory communication. Our method works as follows: the first time a RAW dependence is encoun-
tered, the identities of the dependent store and load are recorded and a new name is assigned to
them (i.e., with their PCs). The next time these instructions are encountered, the previously
assigned name can be used to propagate a value from the store to the load without having to wait
for address calculation and disambiguation. We illustrate the exact process with the example of
Figure 3 where we show how an earlier detection of a RAW dependence between STORE and LOAD

is used the second time these instructions are encountered to provide a speculative value for LOAD.
The first step is detecting the RAW dependence. This is done via the use of a Dependence Detec-
tion Table (DDT) [15]. The DDT is an address-indexed cache the records the PC of a load or a
store that accessed the corresponding address. When the first instance of STORE calculates its
address it also creates a new entry in the DDT (action (a)). Later, LOAD may access the DDT using
the same address (action b) where it will locate the entry for STORE. At this point we have detected
a RAW dependence between the two instructions. As a result, we associate a preferably unique
name, a synonym, with both instructions. This association is recorded in the Dependence Predic-
tion and Naming Table (DPNT) (action 1). This is a PC-indexed table and two entries are created
one for STORE and one for LOAD. When a later instance of STORE is encountered (part (b)), its PC is
used to access the DPNT predicting whether a RAW dependence will be observed (action 2). Pro-
vided that the dependence is predicted, storage for the synonym is allocated in the Synonym File
(SF) (action 3). The SF is a synonym-indexed structure. Initially, the SF entry is marked as empty
as no value is yet available. When STORE receives its input data, the value to be written to memory
is also written into the SF marking the entry as full (action 4). When LOAD is encountered, its PC is
used to access the DPNT and predict the RAW dependence (action 5). Using the DPNT provided
synonym  LOAD can access the SF and obtain a speculative value (action 6). This value can be
propagated to dependent instructions (action 7). Eventually, when LOAD calculates its address and
completes its memory access, the value read from memory can be used to verify whether specula-
tive value was correct (action 8). If it was, speculation was successful. If not, value misspeculation
occurs. While we assumed that STORE receives its data value before LOAD is encountered, this
technique is useful even when this is not so. RAR-based cloaking is similar to RAW-based cloak-
ing with an earlier load being treated similarly to a store [16].  



MEMORY DEPENDENCE PREDICTION IN MULTIMEDIA  APPLICATIONS

4.2  Speculative Memory Bypassing
The process of  RAW-based bypassing is shown in part (a) of Figure 1. As shown, bypassing

speculatively converts a DEF-STORE-LOAD-USE dependence chain into a DEF-USE one, in effect
bypassing the store and load instructions. Consequently, the value can flow directly from the pro-
ducer (DEF RX) to the consumer (USE RY). The exact process is illustrated in Figure 3, part (b). First,
and as part of register-renaming, DEFX obtains a physical register TAG1 for its target register RX

(action 1). Then, and again as part of register-renaming, the store locates this physical register
while, through cloaking also obtains a synonym (action 2). A record of both the synonym and the
physical register TAG1 is kept in the synonym renaming table (SRT). When the load is encoun-
tered it also obtains the same synonym through cloaking. Using this synonym, the load can the
access the SRT and obtain TAG1 the physical register associated with RX. TAG1 is then associated
with the physical register assigned to RY, the load’s target register. Finally, when USE RY passes
through register renaming it will be informed of TAG1. This will allow it to directly obtain the
value produced by DEF RX as soon as this happens. RAR-based bypassing permits a similar optimi-
zation for the consumers of RAR-dependent loads. In this case, the first load that reads a value
from memory, broadcasts this value to all consumers of all RAR-dependent loads. 

5  Related Work
An obvious alternative to cloaking is register allocation which eliminates load and store instruc-

tions altogether. However, register allocation is not always possible for numerous reasons ranging
from fundamental limitations (e.g., addressability) to practical considerations (e.g., register file
size, programming conventions and legacy codes). Cloaking and bypassing are architecturally
invisible. As such, we may deploy them only when justified by the underlying technological
tradeoffs. Moreover, they may capture dynamic dependence behavior.

Numerous software and hardware address-prediction techniques have been used to reduce load
access latency, e.g., [1,2,4,3,5,9,19]. Cloaking is orthogonal to address-prediction-based tech-
niques as it does not require a predictable access pattern. A technique closely related to cloaking is
load value prediction [12], a special case of value prediction [6,11]. Cloaking does not directly
predict the loaded value, rather it predicts its producer or another load that also accessed the same
location. This property may be invaluable for programs with large value sets.

Figure 3: RAW-based speculative memory cloaking (part (a)) and bypassing (part (b)).
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Moshovos, Breach, Vijaykumar and Sohi introduced RAW memory dependence prediction for
scheduling loads [14]. Tyson and Austin [21] and Moshovos and Sohi [15,17] introduced RAW-
based cloaking. The memory renaming proposal of Tyson and Austin combines cloaking with
value prediction. Lipasti’s Alias prediction [10] is also similar to cloaking. Moshovos and Sohi
proposed RAW-based speculative memory bypassing [15]. Jourdan, Ronen, Bekerman, Shomar
and Yoaz proposed a similar method [7] where address information and prediction is used to elim-
inate loads and to increase coverage. Reinman, Calder, Tullsen, Tyson and Austin investigated a
software-guided cloaking approach [18]. RAR memory dependence prediction and RAR-based
cloaking and bypassing were introduced by Moshovos and Sohi [16]. All aforementioned studies
of cloaking and bypassing focused on programs from the SPEC benchmark suite. To the best of
our knowledge, this is the first study of cloaking and bypassing on a set of multimedia programs.

6  Experimental Evaluation
This section is organized as follows: In Section 6.1 we describe our methodology. The first step

in using cloaking is building dependence history. Accordingly, in Section 6.2 we measure the frac-
tion of memory dependences observed as a function of DDT size. In Section 6.3 we investigate an
aggressive cloaking mechanism and study its accuracy. In Sections 6.4 through 6.6 we present a
characterization of the speculated loads by considering their address distribution and locality, and
value locality characteristics. In Section 6.7, we measure the performance impact of a combined
cloaking and bypassing mechanism. 

6.1   Simulation Methodology
The simulators we used are modified versions of the Multiscalar timing simulator. Our base pro-

cessor is capable of executing up to 8 instructions per cycle and is equipped with a 128-entry
instruction window. It takes 5 cycles for an instruction to be fetched, decoded and placed into the
re-order buffer for scheduling. It takes one cycle for an instruction to read its input operands from
the register file once issued. Integer functional unit latencies are 1 cycle except for multiplication
(4 cycles) and division (12 cycles). Floating-point functional unit latencies are as follows: 2 cycles
for addition/subtraction and comparison (single and double precision or SP/DP), 4 cycles SP mul-
tiplication, 5 cycles DP multiplication, 12 cycles SP division, 15 cycles DP division. An 128-entry
load/store scheduler (load/store queue) capable of scheduling up to 4 loads and stores per cycle is
used to schedule load/store execution. It takes at least one cycle after a load has calculated its
address to go through the load/store scheduler which implements naive memory dependence spec-
ulation [14]. That is: (1) a load may access memory even preceding store addresses are unknown,
(2) a load will wait for preceding stores that are known to write to the same address, (3) stores post
their address even when their data is not yet available, and (4) stores may post their data or address
out-of-order. We have found that for our centralized window processor model this speculation pol-
icy offers performance very close to that possible with ideal speculation [13].  The base memory
system comprises: (1) a 128-entry write buffer, (3) a non-blocking 32Kbyte/16 byte block/4-way
interleaved/2-way set associative L1 data cache with 2 cycle hit latency, (4) a 64K/16 byte block/8-
way interleaved/2-way set associative L1 instruction cache with 2 cycle hit latency, (5) a unified
4Mbyte/8-way set associative/128 byte block L2 cache with a 10 cycle hit latency, and (6) an infi-
nite main memory with 50 cycles miss latency. Miss latencies are for the first word accessed. Write
buffers of 32 blocks each are included between L1 and L2, and between L2 and main memory.
Additional words incur a latency of 1 cycle (L2) or 2 cycles (main memory). All write buffers per-
form write combining and hits on miss are simulated for loads and stores. For branch prediction
we use a 64-entry call stack and a 64k-entry combined predictor that uses a 2-bit counter selector
to choose among a 2-bit counter-based and a GSHARE predictors.
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To attain reasonable simulation times we  used sampling for some programs. Table 2.1 reports
the sampling ratio per program. We used sampling only for the timing experiments of section 6.7.
We chose sampling ratios that resulted in roughly 100M instructions being simulated in timing
mode. The observation size is 50,000 instructions. We report sampling ratios under the “SR” col-
umns as “timing:functional” ratios. For example, an 1:2 sampling ratio amounts to simulating
50,000 instructions in timing mode and then switching to functional simulation for the next
100,000 instructions. During functional simulation the I-cache, D-cache, and branch predictors are
simulated. Even when sampling was used, the accuracy of all evaluated techniques was very close,
often identical to that measured when the whole program was simulated using functional simula-
tion.

Finally, we did not provide explicit support for dependences between instructions that access dif-
ferent data types. The original RAW-based cloaking and bypassing proposal discusses potential
support for such dependences [15]. However, an investigation of the utility of such support is
beyond the scope of this paper.

6.2  Dependence Detection Mechanisms
In this section, we measure the fraction of memory dependences that is visible with various DDT

sizes. These measurements provide a first indication of the fraction of loads that can obtain a spec-
ulative value via cloaking. Figure 4 reports the fraction of dynamic (committed) loads with detect-
able RAW or RAR dependences as a function of DDT size (range is 32 to 2K entries and we use
LRU replacement policy). Shown is the total number of loads with dependences (grey shaded area)
and a breakdown in terms of the dependence type (RAW or RAR).

While some programs exhibit relatively high fractions of memory dependences, others do not.
For example, in mpD about 80% of all loads have a RAW of RAR dependences detected with a
256-entry DDT. On the other hand, in mpE only about 30% of loads have dependences detected
even when a 2K DDT is used. This behavior is quite different than that of SPEC95 programs where
in virtually all cases, at least 80% of all loads had dependences detected with a 2K DDT [16]. Nev-
ertheless, for most programs studied the faction of loads with dependences detected is significant. 

No clear trend is observed with respect to the relatively contribution of RAW and RAR depen-
dences. For some programs, RAR dependences account for virtually all dependences detected
(e.g., adE and adE). For others, RAW dependences clearly dominate (e.g., g7D and g7E). In gen-
eral, using larger DDTs results in more dependences being detected. However, for the majority of
programs, most of the dependences detected are visible even with the smaller DDTs (e.g., 128
entries). However, some programs exhibit a steady increase, almost linear, with DDT size (e.g.,
pgD and jpD). 

The frequency of RAW dependences never decreases with larger DDTs. However, in some cases
the frequency of RAR dependences decreases when a larger DDT is used. For example, in epE we
observe about 60% loads having RAR dependences with the 32-entry DDT whereas only 20% of
loads have a RAR dependence detected with a 64-entry DDT. This is caused by an increased fre-
quency of RAW dependences: some of the RAR dependences are among loads that also have a
RAW dependence with a distant store. When smaller DDTs are used the store is evicted from the
DDT due to limited space.

The results of this section suggest that a DDT of moderate size (e.g., 128 entries) can capture
dependences for a significant fraction of loads. The actual range varies significantly from as little
as 20% (e.g., mpE) to as high as 90% (e.g., ras).   For the rest of the evaluation we focus on config-
urations that use a 128-entry DDT. We do so, since for the majority of the programs studied such a
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table detects most of the dependences that are detectable with the larger DDT we studied (i.e., 2K-
entry). On average, an 128-entry DDT detects dependences for 49.7% of all loads.

6.3  Cloaking Accuracy
In this section, we measure the accuracy of two cloaking predictors. We use two metrics: cover-

age and misspeculation rate both measured as a fraction over all executed loads. Coverage is the
fraction of loads that get a correct value via cloaking. The complement of coverage, the fraction of
loads that get an incorrect value, is the misspeculation rate. For the purposes of this study we
assume infinite DPNTs and evaluate predictors with the following two confidence mechanisms:
(1) non-adaptive 1-bit, and (2) a 2-bit automaton. The second confidence mechanism enables
cloaking as soon as a dependence is detected. However, once a misprediction is encountered it
requires two correct predictions before allowing a predicted value to be used again. We include
results for the non-adaptive predictor as it provides a rough upper bound on coverage.

Figure 5 reports cloaking coverage (part (a)) and misprediction rates (part (b)). Two bars are
shown, one for each confidence mechanism: the left one is for the 1-bit non-adaptive, while the
right one is for the aforementioned 2-bit automaton. A breakdown in RAW (grey) and RAR
(white) dependences is also shown. For most programs, the majority of loads with dependences
detected get a correctly predicted value from cloaking. Two notable exceptions are adE and adD
where only about 30% and 20% of loads are correctly predicted, even though, 80% and 60% of
loads have dependences detected (see Figure 4). This behavior can be attributed to different
instances of the same static dependences whose lifetimes overlap [17]. For example, this would be
the case in a loop containing a “a[i] = a[i - 2] ” statement. In this case, the load to “a[i - 2] ” from
iteration i has a RAW dependence with the store to “a[i]” from iteration i - 2. Our cloaking predic-
tor will fail to correctly predict the dependence as another instance of the store instruction (that of
iteration i-1) appears in between the dependent instructions. We have observed a similar phenome-
non for the SPEC95 programs [17].

 The relative importance of RAW and RAR dependences varies per program. For example, in
adE and adD, all correctly predicted loads have a RAR dependences, while in gmE the vast major-
ity of correctly predicted loads have a RAW dependence. With the exception of adE and adD, only
relatively minor loss in coverage is incurred when the adaptive predictor is in place. As the results
on misspeculation rates (part (b)) show, this loss comes at the benefit of a drastic reduction in mis-
speculations. On average the adaptive predictor reduces misspeculations by almost an order of
magnitude compared to the non-adaptive predictor. For most programs misspeculation rates with

Figure 4: Fraction of loads with RAW or RAR dependences as a function of DDT size. Range is 32 
to 2K in power of 2 steps.
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the adaptive predictor are on or below 1%. In the worst case observed (adD), about 4% of all loads
get an incorrect value from cloaking. Unfortunately, this a relatively high misspeculation rate if
one considers that about 10% of loads get a correct value from cloaking for the same program. As
we will show in Section 6.7, no performance benefits are observed in this case (however, no per-
formance degradation is observed either). In the rest of the evaluation we restrict our attention to
the adaptive predictor. On the average, 33.3% of all loads get a correct value with this predictor. 

6.4  Address Space Breakdown
In this section we present a breakdown of the memory traffic handled by cloaking in terms of the

address space eventually accessed by the corresponding loads. Figure 6 shows a breakdown of
loads that get a value from cloaking in terms of the address segment that the load accesses. We
split loads to those the access the data, heap and stack segments. Two bars are shown per bench-
mark. The one on the left is for correctly predicted loads, while the one of the right is for misspec-
ulated loads. It can be seen that while a large fraction of the correctly predicted values belongs to
the data and stack segments, many heap values are also correctly handled by cloaking. In fact,
compared to the SPEC95 programs, heap accesses account for a significantly larger fraction of
correctly predicted values. In some programs, many of the misspeculations are from accesses to
the stack. Usually, this is caused by recursive functions that give rise to dependences whose life-
times overlap. As we explained in the previous section, the specific cloaking predictor cannot han-
dle such dependences.  

6.5  Address Locality 
We next measure the address locality of the loads that get a correct value via cloaking. We define

address locality as the probability that a load instruction accesses the same address in two consec-
utive executions. We present these measurements to offer additional insight on the type of loads
that are correctly handled by cloaking. The results are shown in Figure 7. The left bar represents
the fraction of all loads that exhibit address locality while the right bar represents the fraction of
loads that get a correct value via cloaking. We breakdown the left bar into three categories depend-
ing on whether a RAW, a RAR or no dependence is detected by our 128-entry DDT. For some pro-

Figure 5: Breakdown of cloaking accuracy per dependence type: (a) coverage, and (b) 
misprediction rates (logarithmic Y axis). Two predictors are shown per program (see text). 
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 RAW  RAR

 RAW+RAR RAR RAW

0%

20%
40%

60%
80%

100%

0.25%
1%
5%

25%
100%

adDadE epD epE g7D g7E gs jpD jpE mpD mpE pgD pgE rasdom gmD gmE

adDadE epD epE g7D g7E gs jpD jpE mpD mpE pgD pgE rasdom gmD gmE

(a)

(b)



MOSHOVOS & SOHI

grams, cloaking correctly predicts a significant fraction of loads that do not exhibit address locality
(e.g., gmD or mpD). For others, significant fractions of loads exhibit address locality but are incor-
rectly predicted by cloaking (e.g., g7D and gmE). Nevertheless, in general address locality and
cloaking coverage appear to be correlated for most programs. In some programs, and when we
take the actual presence of memory dependences into account, we can observe relatively notice-
able fractions of loads that are correctly predicted by cloaking and that do not exhibit address
locality. For example, in g7D address locality and cloaking coverage are roughly 60% and 50%
respectively.  However, only 40% of all loads with address locality have a dependence detected.
Other programs were similar phenomena are observed include pgE, jpD, g7E, and jpE. We should
note that locality provides just an indication of the accuracy of an address-based predictor. For
example, in the next section we will see that an actual value predictor does not correctly predict all
loads that exhibit value locality. While we have seen that there is high-correlation between
address-locality and memory-dependence-locality in these multimedia applications, the correlation
was not as strong in the SPEC95 programs [17].

6.6  Value Locality and Prediction
  In this section, we measure the value locality of loads and its correlation to cloaking coverage.

We do so as value prediction can also be used to predict load values, possibly earlier than cloaking
would allow. Figure 8 reports the fraction of loads that exhibit value locality alongside with a
breakdown of loads that get a correct value via cloaking. As in the previous section we provide a
breakdown of the loads that exhibit value locality based on whether they have a dependence
detected. Again, there is no common trend. In some programs, value locality is stronger than
cloaking coverage (e.g., epD) while in others the opposite is true (e.g., ras). However, for most pro-
grams, cloaking correctly predicts more of the loads with dependences. For example, in jpE cloak-
ing coverage and value locality are both about 50%. However, only 30% of all loads have a
dependence and  exhibit value locality.  

Figure 6: Address space breakdown. Left bar: Correctly communicated values. Right bar: 
Misspeculated values.

Figure 7: Address Locality breakdown.
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To better understand how value prediction and cloaking/bypassing relate, we next compare an
actual value predictor with cloaking/bypassing. For this experiment we simulated a fully-associa-
tive last-value predictor with 16K entries. The cloaking mechanism we use has a 16K DPNT, a
128-entry DDT and a 2K set associative synonym file. All structures are assumed to be fully-asso-
ciative. Figure 9 reports the results. Part (a) reports coverage, while part (b) reports misspeculation
rates. Again, no prediction method outperforms the other one for all cases. However, we can
observe that not all loads with value locality are correctly predicted. For example, while value
locality was somewhat higher in doom, with the actual predictor cloaking is slightly better. As seen
in part (b), for most programs, the mispeculation rate for cloaking is somewhat lower than that of
value prediction. This is true even for programs where cloaking coverage greatly exceeds that of
value prediction (e.g., ras). However, there are cases where cloaking mispeculation rates are signif-
icantly greater than that of value prediction  even though cloaking coverage is not significantly
greater (e.g., epE),

Aggregate metrics such as coverage do not provide sufficient insight on the actual mix of loads
that are correctly predicted by cloaking and value prediction. While either technique may correctly
predict, say 50% of all loads, the actual loads predicted may be totally different for each technique.
For this reason, we measured the fraction of loads that get a correct value from cloaking/bypassing
but not from value prediction and vice versa. The results are shown in Table 6.1. We also present a
breakdown of the values obtained via cloaking/bypassing in terms of the dependence type. As it
can be seen, for most programs, there is a significant number of loads that are predicted by only
one of the two. For example, in epD, 10% of correctly predicted loads by cloaking are not correctly
predicted (could be not predicted at all) by value prediction. The fraction of loads correctly pre-
dicted by value prediction for the same program is 37%. Again, there is no clear trend on which

Figure 8: Value Locality breakdown.

Figure 9: Comparing a value predictor and a cloaking/bypassing predictor: (a) Coverage. (b) 
Misspeculation rates.
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technique covers more loads. These observations suggest a potential synergy of the two tech-
niques.  While context-based value predictors could be used to improve value prediction coverage,
cloaking offers a concise way of representing information for prediction purposes for a large frac-
tion of loads. 

6.7  Execution Time Measurements
In this section, we evaluate the performance impact of a combined cloaking and bypassing

mechanism. The rest of this section is organized as follows: In Section 6.7.1 we describe the cloak-
ing/bypassing mechanism we simulated. In Section 6.7.2 we measure how performance varies
when cloaking/bypassing is used.

6.7.1  Integrating Cloaking/Bypassing into the Pipeline 
The cloaking/bypassing mechanism we used comprises: (1) a 128-entry fully-associative DDT

with word granularity, (2) an 8K, 2-way set-associative DPNT, and finally, (3) an 1K, 2-way set
associative synonym file. Figure 10 illustrates how the various components of the cloaking/bypass-
ing mechanism are integrated in the processor’s pipeline. Detection of dependences occurs when
loads or stores commit via the DDT. Synonym file updates and DPNT updates also occur at com-
mit time. Dependence predictions are initiated as soon as instructions enter the decode stage. For
bypassing, loads and stores that are predicted as producers associate the actual producer of the
desired value with their synonym via synonym rename table (SRT) entry. That is, SRT entries asso-
ciate synonyms with physical registers. Loads that are predicted as consumers inspect the SRT and
the SF in parallel to determine the current location of the their synonym. If an SRT entry is found,
the synonym resides in the physical register file as the corresponding load or store has yet to com-
mit. Otherwise, the synonym is in the SF. At most 8 predictions can be made per cycle and at most
8 instructions can be scheduled for cloaking or bypassing per cycle.  

Misspeculations are signalled only when an instruction has actually read an incorrectly specu-
lated value. Selective invalidation is used to recover from misspeculations. This mechanism re-

Cloaking/Bypassing
VP

RAW RAR Total
adD 0.06 0.04 0.11 0.65
dom 0.05 0.04 0.09 1.58
adE 6.67 0.62 7.29 3.21
epD 8.97 1.91 10.87 37.77
epE 3.57 1.01 4.58 2.34
g7D 21.17 1.05 22.23 4.38
g7E 21.21 1.06 22.26 3.93

gs 18.09 1.04 19.11 8.85
gmD 1.42 23.35 24.77 0.78
gmE 15.25 1.66 16.91 28.24
jpD 1.89 1.48 3.37 16.14
jpE 16.40 0.27 16.68 11.42

mgD 7.80 0.55 8.35 9.11
mgE 1.84 2.00 3.83 4.87
pwD 5.52 1.46 6.99 5.91
pwE 11.18 1.06 12.25 4.16

ras 37.12 2.52 39.64 1.12

Table 6.1: Fraction of loads that get a correct value from cloaking/bypassing and not from a value
predictor (“Cloaking/Bypassing” columns) and vice versa (“VP” columns). 
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executes only those instructions that used incorrect data. We have found that squash invalidation
(i.e., invalidating all instructions starting from the one that was misspeculated) typically results in
performance degradation even with relatively low misspeculation rates. 

A challenge shared by most value speculative techniques is data speculation resolution, that is
how quickly we can establish that speculative values are correct. Moreover, care must be taken to
avoid destructive interference with branch prediction [20]. We assumed the ability to resolve all
speculation in a register dependence chain as soon as its input values are resolved. Whether such a
mechanism is practical is still an open question. Finally, we disallow control resolution on
branches with value speculative inputs.

6.7.2  Performance
Figure 11, part (a) shows performance improvements when cloaking/bypassing is used. Speedup

are measured over the base processor that uses no cloaking/bypassing. Two bars are shown. The
one on the left is with a total cache access latency of 2-cycles, while the one on the right is for 3-
cycle cache latency.  For some programs virtually no performance improvements are observed.
Speedups of 5% or more are observed only for doom, gs, jpE and ras. Performance improvements
are generally higher as cache latency increases from 2 cycles to 3 cycles. However, in some cases
this is not true, as for example, in mpD. This can be attributed mostly to loads with RAR depen-
dences. Upon receiving a response from the cache, the base processor will search for any outstand-
ing loads to the same address in the load/store queue and service them without issuing additional
cache accesses. When cache latency is increased, subsequent loads may end up calculating their
address before the first load gets its value from the cache. On the average, performance improves
by 2.6% and 3.75% for the 2-cycle and 3-cycle cache systems respectively.

Figure 11, part (b) reports the fraction of all instructions that are executed speculatively as the
result of cloaking/bypassing. The loads that trigger cloaking/bypassing are not included in this
metric. For most programs, a relatively large fraction of instructions are executed speculatively.
However, there is not always a direct correlation with performance improvements. For example,
even though roughly 40% of speculative instructions are executed in gmD, no noticeable perfor-
mance improvements result. Ultimately, performance improves only when the speculated instruc-
tions are part of the critical path. 

 In Figure 12 we report speedups for a processor that does not speculate on memory dependences
(i.e., loads wait for all preceding stores to calculate their address). We do so for completeness and
as most studies in value speculative techniques assume such a configuration. For this experiment
we restrict our attention to the 2-cycle cache. It can be seen that in most cases speedups are signif-
icantly higher (sometimes double) compared to Figure 11 where the base processor uses memory

Figure 10: Integrating  cloaking/bypassing into a pipeline.
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dependence speculation (see Section 6.1). There are cases where the speedups are smaller. This is
the result of having loads wait for the addresses of all preceding stores. This results in a longer crit-
ical path comprised mostly of loads which cloaking/bypassing cannot attack.

7  Conclusion
We have studied the memory dependence behavior of a set of multimedia applications. We have

also studied the utility of cloaking/bypassing for this set of applications. We have shown that both
the RAR and RAW memory dependence stream of these applications is highly regular. This obser-
vation suggested that history-based prediction of memory dependences is possible. However, we
have observed that some of these applications do not exhibit relatively high rates of short distance
memory dependences. 

We have found that for most of these programs, memory dependence prediction can be used to
support cloaking/bypassing. We have found that a relatively simple predictor can be used to predict
most values for significant fractions of loads with dependences. The actual fractions varied from as
little as 10% of all loads to as much as 90%. We have studied the address space distribution of
these values and found that while data and stack accesses account for a significant portion, many
heap accesses are also correctly predicted. We have found that, for the most part. there is some cor-
relation between address locality and cloaking coverage. We also found that cloaking correctly
predicts a significant fraction of loads that a load value predictor doesn’t and vice versa. We mea-
sured the performance impact of a cloaking/bypassing mechanism. For most programs, perfor-
mance improvements were relatively small. On the average, performance improved by 3.75% for a
system with a 2-cycle cache access latency. However, for four of the programs studied perfor-
mance improved significantly and as much as 16%. We also showed that the performance benefits
of cloaking/bypassing increase when cache latency is also increased. 

Figure 11:  (a) Performance of cloaking/bypassing for two different cache access latencies. (b) 
Fraction of speculatively executed instructions due to cloaking/bypassing.

Figure 12: Performance of cloaking/bypassing when no memory dependence speculation is used.
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