
Speculative Updates of Local and Global Branch History:
A Quantitative Analysis

Kevin Skadron SKADRON@CS.VIRGINIA .EDU

Dept. of Computer Science
University of Virginia
Charlottesville, VA 22903

Margaret Martonosi MRM@EE.PRINCETON.EDU

Douglas W. Clark DOUG@CS.PRINCETON.EDU

Depts. of Electrical Engineering and Computer Science
Princeton University
Princeton, NJ 08544

Abstract
In today’s wide-issue processors, even small branch-misprediction rates introduce substantial performance

penalties. Worse yet, inadequate branch prediction creates a bottleneck at the fetch stage, restricting other op-
portunities for improving performance. The choice of how to predict conditional-branch outcomes is the
primary lever on prediction accuracy. But the choice ofwhento update the predictor with branch outcomes
is a second powerful lever, and the subject of this paper. In history-based predictors likegshare, many mis-
predictions result from commit-time update of the history: typical pipelined processors predict branches in
the fetch stage, but update the predictor in the commit stage, making the predictor’s state temporarily out-
of-date. As pipelines grow longer—in particular, when branches can spend many cycles in the instruction
window waiting to issue—this problem becomes worse. Prior work on this subject has discussed the need for
speculative update in a global-history-based predictor; this paper evaluates speculative history update for both
global-history and local-history predictors of various configurations, using cycle-level simulation to show the
effects of prediction accuracy and update time on overall performance. The results show the importance of
speculative history update, but also that speculative update requires suitable fixup mechanisms for repairing
state that has been corrupted by mispredictions. A number of such mechanisms are discussed.

1. Introduction

Achieving the highest possible branch prediction accuracies is critical to good processor performance. In
wide-issue, deeply-pipelined processors, a single misprediction creates a pipeline bubble that can waste the
opportunity to execute 15, 30, or more instructions. For this reason, research continues to explore new tech-
niques, especially fordynamicallypredicting branch outcomes. Dynamic schemes do not require instruction-
set modifications, and they learn run-time behavior that compilers cannot account for, in particular variations
resulting from different input data.

Two-level-adaptive schemes [1] have proven especially effective, because they correlate behavior among
different branches. They also recognize more complex behavior patterns for a particular branch than sim-
ple up-down counters (like the table of 2-bit counters described by Smith [2] and found in several recent
processors [3, 4]). Two-level schemes now appear in many high-performance processors: the AMD K6
and Athlon [5, 6] and the soon-to-be-released UltraSPARC III [7] usegshare[8] predictors; the Pentium-
Pro/Pentium-II [9] also uses a two-level scheme, but of a confidential nature; and the Alpha 21264 [10, 11]
uses two different two-level predictors in conjunction with a selector that chooses between the compo-
nents [8, 12].

Most branch-prediction studies use instruction-level simulations that assume the correct result of one
branch—regardless of whether it was mispredicted—is available to help make subsequent predictions. In a
pipelined processor, however, the correct result is only determined when the branch is resolved. Between

SKADRON, MARTONOSI & CLARK

the time a branch is predicted and is resolved, 5, 10, or more cycles may elapse; the minimum misprediction
latency in the Alpha 21264, for example, is 7 cycles. During this time as many as 10 or 20 further branches
may be fetched and predicted. If the processor only updates the predictor in the commit stage, predictions
must therefore be made with “stale” state that lacks results from these branches that are still in flight. This
particularly presents a problem for two-level-adaptive schemes, because these depend on accurate knowledge
of previous branches’ behavior, including those still in flight.

Making branch results available without long delays is, however, feasible if the predictor can be spec-
ulatively updated with the predicted branch outcome instead of the resolved outcome. When predictions
are correct, the speculative update causes no harm. Only in the case of a misprediction will a speculative
update insert wrong information into the predictor, but the resulting damage can be repaired. This paper
describes the need for speculative update, the need for correcting the predictor’s state after a misprediction,
and mechanisms for accomplishing this.

When evaluating repair mechanisms, a further complication arises in those out-of-order processors that
resolve branches as soon as they complete execution (i.e. the writeback stage), instead of at commit time. In
this case, branches may resolve out of order, and any repair actions in the event of a misprediction must avoid
corrupting or discarding state corresponding to prior, as-yet unresolved branches.

Related Work. Past research has shown the need for speculatively updating branch history registers. Yeh
and Patt, in their 1992 paper comparing different two-level branch predictor organizations [1], state that spec-
ulative update improves prediction accuracy but do not describe mechanisms for repair after mispredictions.
Talcottet al. [13] argue that older branch histories work just as well as newer ones, making speculative up-
date unnecessary. Their evaluation approximates commit-time update by using histories that omit results
from a fixed number of the most recent branches. Hao, Chang, and Patt [14] refute Talcottet al.’s results
with cycle-by-cycle simulations showing that the number of outstanding branches varies, and this variability
makes speculative history update necessary (see Section 3.1). Their results consider a GAp1 scheme, a the-
oretical predictor that maintains global history but provides each branch with its own table of 2-bit counters
(thepattern history table, or PHT). Jourdanet al. [15] confirm these results for a single gshare predictor, and
briefly suggest some mechanisms for repairing histories that have been corrupted by mispredictions, primarily
focusing on global-history predictors. Their discussion mostly envisions storing necessary repair state in the
instruction reorder buffer, as it draws on mechanisms for recovering register state that are described in [16].
The Jourdan paper also explores the benefits of speculative update for other branch predictor structures, and
in particular shows that the PHT is insensitive to whether it is updated early or not. This insensitivity presum-
ably results from the hysteresis in the PHT’s 2-bit counters: a strongly-biased counter requires two changes
to alter its prediction. On the other hand, the Jourdan paper further showed that speculative update and repair
in thereturn-address stackhave a substantial effect on performance. Skadronet al. [17] extended this work,
describing a simple repair return-address-stack repair mechanism that simply saves and restores the top-of-
stack pointer and the top-of-stack contents. It nearly eliminates return mispredictions, with corresponding
speedups of 4.5–8.7% in the SPECint95 benchmarks [18] on a processor similar to the Alpha 21264.

This work not only explores speculative update and associated repair mechanisms for global-history-
based predictors in greater detail, but also explores speculative update for local-history (per-branch) based
predictors, a topic which has previously received scant attention.

Although implementation and timing details about commercial processors are hard to come by, specula-
tive update already appears in at least one announced microprocessor, the Alpha 21264 [11]. This processor
uses two predictors, one based on global history and one based on local history, and dynamically chooses the
prediction that is more likely to be correct. Only the global history uses speculative update.

Contributions. This paper presents, for both global- and local-history schemes, a systematic evaluation,
using eleven SPEC95 benchmarks, of how much speculative history update can improve performance. The
work explores these issues as a function of branch predictor size and as a function of the number of branches

1. Global history, Adaptive PHT, Per-address PHT

2

SPECULATIVE UPDATES OFLOCAL AND GLOBAL BRANCH HISTORY:A QUANTITATIVE ANALYSIS

allowed to be in flight at once. This detailed data substantially extends prior characterizations of speculative
update’s importance for global-history based predictors [13, 14, 15], and to our knowledge is the first such
published data for local-history based predictors.

Our results show that, as predictors grow larger, speculative update tends to matter less for global-history
predictors, but that it matters more for local-history predictors. For both types of predictor, speculative
update matters more as more branches are in flight simultaneously, although this effect plateaus for most
integer benchmarks at a level of 4–8 in-flight branches.

This paper also describes in detail several possible mechanisms for maintaining the required state for
repairing branch history after mispredictions. Data are then presented that show how the decision to im-
plement speculative update can affect the overall choice of branch-predictor type and configuration. In par-
ticular, providing speculative update for local-history schemes trades off against combining predictors in a
McFarling-style hybrid predictor [8].

The rest of this paper is organized as follows. The next section describes our simulation techniques and
the benchmarks we choose. Section 3 discusses speculative-update effects in a global-history predictor, and
Section 4 discusses them in a local-history predictor. Section 5 reports results for a hybrid predictor design,
and Section 6 concludes the paper.

2. Simulation Methodology

2.1 Simulator

We useHydraScalar—our heavily modified version ofsim-outorderfrom Wisconsin’s SimpleScalar toolkit
version 2.0 [19]—for our experiments. SimpleScalar provides a toolbox of simulation components—like a
branch-predictor module, a cache module, and a statistics-gathering module—as well as several simulators
built from these components. Each simulator interprets executables compiled bygccversion 2.6.3, targeting a
portable, virtual instruction set (PISA) that most closely resembles MIPS IV [20]. The simulators instantiate
a virtual machine and can emulate the object program’s execution in varying levels of detail. Simulations
do not model kernel behavior or context switches, instead performing operating-system calls by proxy; but
otherwise all non-kernel behavior, including library code, is simulated.

HydraScalar simulates at the cycle level an out-of-order execution, five-stage pipeline: fetch (including
branch prediction), decode (including register renaming), issue, writeback, and commit. We add three further
stages between decode and issue to simulate time spent renaming and enqueuing instructions. Issue selects
the oldest ready instructions for execution.

Cycle-by-cycle simulators like HydraScalar that do their own instruction fetching and functional sim-
ulation (as opposed to relying on direct execution to provide instructions for simulation) can accurately
model mis-speculated paths. Like a real processor, HydraScalar checkpoints appropriate state as it encounters
branches, and then proceeds down the predicted path, executing wrong-path instructions if appropriate. Upon
detecting a mispredicted branch, wrong-path instructions are squashed, and recovery from the checkpointed
state is straightforward. This modeling captures mis-speculation consequences like prefetching, cache pollu-
tion, and—if the predictor is updated speculatively—pollution in the branch predictor.

In our model, detecting mispredictions takes place in the writeback stage, and cleanup commences imme-
diately, even though mispredictions may be detected out of order. Unlike misprediction handling, however,
updating the predictor’s state (history, up-down counters, etc.) takes place in-order, at instruction commit.
The obvious exception are experiments that test early, speculative update of branch-history state.

Conditional-branch direction-mispredictions suffer at least a seven-cycle latency, because the branch con-
dition does not resolve until the writeback stage. Conditional jumps for which the predicted direction is
correct—and direct jumps—can still miss in the BTB (amisfetch), but a dedicated adder in the decode stage
computes branch targets so that BTB misses can be detected early. In such a case, a BTB miss still redirects
the fetch engine, but the detection of the misfetch during decode means the resulting bubble is only 2 cycles
long. Indirect jumps, even though known to be taken, need to read the register file and HydraScalar assumes
this action cannot be performed from decode. Indirect-jump targets therefore cannot be computed by the

3

SKADRON, MARTONOSI & CLARK

Parameter Value Comments
Processor core

RUU (register-update-unit) size 128 Instruction window
LSQ (load-store-queue) size 64 Enforces load-store ordering
Instruction register size 16 instructions Buffer b/t fetch and decode
Decode/rename latency 4 cycles Min time b/t fetch and issue
Fetch width up to 8 instructions per cycle Must be in same cache block
Decode width up to 8 instructions per cycle In-order
Issue width up to 8 integer ops per cycle plus Out-of-order

2 FP ops per cycle
Commit width up to 8 instructions per cycle In-order
Functional units 8 ALU/logical (1), 4 branch/shift(1), Latency appears in paren-

1 integer multiply/divide (12/20), theses
2 FP add (4), 2 FP multiply (4),
1 FP divide/sqrt (16/33)

Memory ports any combination of 3 loads/2 stores
Branch prediction

Predictor style gshare, PAg, or PAs
BTB 2048-entry, 2-way updated only if taken
Return-address stack 32-entry, repaired after mispredictions repair: TOS ptr. & contents
Mispredict penalty 2 cycles for misfetch, 7 cycles otherwise

Memory hierarchy
L1 data-cache 128 K, 2-way (LRU), 32 B blocks,

8 MSHRs, 1-cycle latency
L1 instruction-cache 128 K, 2-way (LRU), 32 B blocks,

1 cycle latency
L2 unified, 8 M, 4-way (LRU), 32 B blocks,

4 MSHRs, 12-cycle latency
Memory 200 cycles
L1!L2 bus 1 transaction every 2 cycles
L2!mem bus 1 transaction every 8 cycles

Table 1: Baseline configuration simulated by HydraScalar.

dedicated adder in the decode stage, and if the BTB mispredicts the target, the error is only detected in the
writeback stage. Since many entries in the direction predictor correspond to not-taken branches (or are simply
idle), the BTB is decoupled [21], only allocating entries for taken branches. This permits the BTB to have
fewer entries. The return-address-stack is updated speculatively, and repaired using the top-of-stack pointer
& contents scheme [17].

The predictor we model makes a prediction for each branch fetched, but within a group of fetched in-
structions, those that follow the first predicted-taken branch are discarded, because control must now jump to
a new location. This effectively means that the fetch engine fetches through not-taken branches but stops at
taken branches. Each branch can potentially mispredict, requiring the processor to track some state to permit
cleanup (for example, the register map, and in this paper, branch-predictor repair information). Thisshadow
statecan be tracked in the instruction window or in dedicated structures. This study explores the question of
how to best organize this the shadow state.

Table 1 summarizes our baseline model. Since issue widths, instruction-window sizes, and so forth
continue to grow, this work assumes an aggressive, 8-wide machine with a 128-entry instruction window and
128 Kbyte caches. The cache hierarchy is a conventional two-level, non-blocking organization with separate
first-level instruction and data caches. The architectural registers (32 each for integer and floating-point) are
separate and updated on commit; renaming determines whether operands reside in the RUU or in architectural

4

SPECULATIVE UPDATES OFLOCAL AND GLOBAL BRANCH HISTORY:A QUANTITATIVE ANALYSIS

state. A 64-entry load-store queue (LSQ) disambiguates memory references: stores may only pass preceding
memory references whose addresses are known not to conflict. Finally, for these simulations, HydraScalar
models a pipelined bus with a fixed fetch spacing.

2.2 Benchmarks

We primarily explore the SPEC95 integer benchmarks [18], summarized in Table 2. We use the provided ref-
erence inputs. All benchmarks are compiled usinggcc -O3 -funroll-loops (-O3 includes inlining).
We also include three SPEC95 floating-point benchmarks, but because prediction accuracies are so high for
the floating-point suite, we generally find that speculative update has little impact for them.

Warmup Branches Branch Cond. Branch
Insts per Instruction Accuracies Counts

All Return Indir Cond All Return Indir Cond Dynamic Static

go 926 M 0.144 0.011 0.002 0.111 0.725 1.000 0.629 0.656 5.6 M 3,973
m88ksim 26 M 0.212 0.018 0.003 0.162 0.957 1.000 0.251 0.955 8.1 M 231
gcc (cc1) 221 M 0.194 0.015 0.030 0.144 0.842 1.000 0.350 0.836 7.2 M 11,727
compress 2576 M 0.202 0.028 0.000 0.133 0.924 1.000 0.063 0.886 6.7 M 205
li (xlisp) 271 M 0.236 0.027 0.082 0.137 0.948 0.997 0.814 0.935 6.8 M 334
ijpeg 824 M 0.059 0.001 0.003 0.051 0.888 1.000 0.984 0.869 2.5 M 657
perl 601 M 0.193 0.019 0.077 0.129 0.937 0.990 0.332 0.954 6.5 M 352
vortex 2451 M 0.166 0.021 0.021 0.121 0.968 1.000 0.768 0.963 6.1 M 3,121
tomcatv 2276 M 0.194 0.000 0.000 0.131 0.999 na na 0.999 6.6 M 51
hydro2d 376 M 0.262 0.000 0.048 0.180 0.998 1.000 0.689 0.998 9.0 M 251
mgrid 476 M 0.235 0.000 0.000 0.158 0.999 1.000 0.514 0.998 7.9 M 906

Table 2: Benchmark summary. Statistics are from the post-warmup, 50 M-committed-instruction simula-
tion window, and use the baseline configuration in Table 1. “All” refers to all branches, whether
conditional, direct-jump, indirect-jump, or return. “Indirect branches” do not include returns.
“Branch accuracy” refers to target-address prediction, except for the conditional-branch column,
which presents direction-prediction accuracies. These results are for a gshare predictor with 14 bits
of global history and a 16 K-entry PHT that is updated in the commit stage.

Some benchmarks come with multiple reference inputs, in which case one has generally been chosen. For
go, we choose a playing level of 50 and a 21x21 board with the9stone21 input. Form88ksim, we use the
dhrystone input; for gcc, cccp.i ; for ijpeg, vigo.ppm ; and forperl, we use the scrabble game. But
for xlisp, we run the program with all the supplied LISP files as arguments.

2.3 Simulation Length

Running the SPEC benchmarks to completion with the “ref” inputs on a cycle-level simulator is prohibitive.
For some benchmarks, each data point would take days. Using the shorter “test” or “train” inputs, on the other
hand, risks unrepresentative results, because some of these inputs are simplistic or even trivial. Instead, we
perform full-detail simulation for a representative, 50 million instruction segment of the program’s execution
with the “ref” input. Cycle-level simulations are run in a fast mode to reach the chosen simulation window.
In this fast mode no microarchitectural simulation takes place; only the caches and branch predictor are
updated. Table 2 includes the length of the fast-mode (“warmup”) phase for each benchmark, including 1
million instructions in which simulation runs in full detail to prime other structures. Table 2 also shows for
each benchmark the number of dynamic branch references seen during the simulation window, as well as
the number of static branch sites seen. We compared the branch-site coverage for simulation windows of 50

5

SKADRON, MARTONOSI & CLARK

million and 100 million instructions. For all exceptgo, gcc, tomcatv, andhydro2d, the coverage is the same.
Forgoandgcc, the 50 million instruction window covers 85% of the branch sites covered by the 100 million
instruction window, and fortomcatvandhydro2d, the coverage is 50%.

Using a 50 million instruction simulation window reduces the simulation time substantially. Even if sim-
ulating each benchmark to completion took only one day, just producing the data in this paper would have
taken 2.6 machine-years to complete! Instead, the experiments took only about 2 machine-months. Further-
more, unless context switches are modeled, simulating the benchmarks to completion is not necessarily more
accurate, because it builds up branch predictor and cache state across the length of the program, behavior
which unrealistically benefits branch-prediction and cache accuracy, more so than in the approach used here.

To ensure that our chosen segment does produce representative results we follow several steps. We use
interval-miss-rate traces to verify that we have chosen a segment with representative branch-prediction, first-
level data cache, first-level instruction cache, and second-level cache behavior. Then we use cycle-level
simulations to further verify that overall IPC and the relationship among the aforementioned parameters is
representative.

For each benchmark, we first use a simple miss-rate simulator that measures the cache miss rate and
branch misprediction rate for each 1 million instruction interval, independent of the previous interval. We
gather data for the entire program’s execution, then identify a candidate simulation window and test its va-
lidity using cycle-level simulation. For a range of cache and branch-predictor configurations, we compare
the program’s IPC during the chosen 50 million instruction window to the program’s IPC for a much larger,
250 million instruction window. In the case ofgo, we used a 500 million instruction window instead. This
approach is indeed simulation-intensive, but the cost is a one-time cost that can be amortized over an arbitrary
number of studies that use these benchmarks. We have used these simulation windows for tens of thousands
of individual simulations.

We have found that the single, most important factor when sampling this way is to avoid the program’s
initial phases, which might exhibit unusual behavior.Compress, for example, exhibits very different behavior
for its first 1.5 billion instructions. This is solely an artifact of the SPEC95 benchmark version ofcompress;
during this initial phase, the program generates the data that it will subsequently compress or decompress.
The branch misprediction rate during this phase is approximately twice as high as during the rest of the
program.Perl, vortex, andtomcatvare other programs with markedly different initial phases, and most of the
SPEC95 benchmarks exhibit some startup behavior.

Altogether, this approach verifies that the chosen simulation windows provide representative behavior
in terms of branch prediction accuracy, cache performance, and overall IPC. The use of interval-miss-rate
graphs ensures that we avoid grossly unrepresentative behavior. Then the comparison of IPC across multiple
configurations gives us IPCsurfacesthat permit us not only to verify the IPC itself, but also the validity of the
relationship among branch-predictor configuration, cache configuration, and IPC. In all cases, the simulation
window eventually chosen matches the longer 250 million instruction window well in all regards, and IPC
values are accurate to within less than 4% (usually within 1%).

The approach is described in more detail in [22].

3. Speculative Update for Global History

3.1 The Need for Speculative Update

Global-history predictors, like GAg2 [1] and gshare [8], maintain a single history register that tracks the
behavior of recent conditional branches. Each branch shifts its result into one end of this register, causing
the oldest result in the register to be discarded. To make a prediction, a branch indexes the PHT (the table of
saturating up-down counters) with this global history, and predicts taken/not-taken depending on the selected
counter value. In some schemes, the index into the PHT also incorporates branch-address bits. Gshare, for
example, xor’s the history and the branch’s address to produce an index, in order to reduce the likelihood that
two branches compete for a PHT entry.

2. Global history, Adaptive PHT, Global PHT

6

SPECULATIVE UPDATES OFLOCAL AND GLOBAL BRANCH HISTORY:A QUANTITATIVE ANALYSIS

Tracking the history of all conditional branches together in one register like this permits the predictor to
recognize correlation among branches. A program might, for example, have a sequence of statements like

if (A) B1
...

if (B) B2
...

if (A and B) B3
...

The third if is determined by the results of the prior two. Ideally, the outcomes of branches B1 and
B2 appear in the global-history register by the time B3 must be predicted. Without speculative update, this
often is not the case, so this section explores the need for speculative update of the global-history register.
(Regardless of when the history is updated, the PHT can be updated either speculatively or non-speculatively;
as mentioned earlier, the hysteresis in the counters protects them from damage by speculative update, and the
timing of the PHT’s update has minimal impact on performance.)

A processor updating the predictor non-speculatively waits until instruction-commit to add branch results
to the history register. The above example demonstrates the difficulty. Branch B3’s outcome is predetermined
by the results of B1 and B2. Unless aliasing interferes, a global predictor, once trained, should never mispre-
dict B3, but to ensure a correct prediction for B3, the global history must contain the results of predictions B2
and B1. If the intervening basic blocks are sufficiently long, B2 and B1 indeed commit before B3 performs
a prediction, and B3 predicts correctly. If the basic blocks are too short and the processor fetches B3 before
resolving B1 and B2, the prediction of B3 finds a stale history that lacks B1’s and B2’s results. Of course,
this delay does not necessarily cause a misprediction: B3 may be quite predictable on its own (error-checking
code, for example), or well-correlated with branches prior to B1.

Non-speculative update presents a second timing problem, described in detail by Haoet al. in [14]. Even
if a particular branch can be well predicted using stale histories, out-of-order processors exhibit variability
in the latency between two predictions. This occurs because dynamic events like cache misses, other mis-
predictions, and resource shortages cause the instruction-window contents to vary. Even in-order processors
exhibit variability if they use non-blocking caches. On successive predictions of some branch, a particular bit
in the global-history register may therefore correspond to different branches. This means that even though
the actual history of branch results prior to B3 may be the same each time B3 is encountered and identical
predictions should result, different predictions may in fact occur. Different numbers of outstanding branches
cause the global-history register’s contents to act as a moving window on the actual history. See Figure 1 for
an example. Unless the predictor can train for all possible such windows—and this variability enhances the
likelihood of aliasing—non-speculative update creates mispredictions even for predictable branches.

0101110100111011

0101110100111011

B1 B2

Figure 1: Two occurrences of branch B3 with the same actual history of preceding branch results. But dif-
ferent numbers of outstanding branches cause the history that appears in the global-history register
(shown by the boxes) to vary.

The alternative is to update the history immediately after a prediction with speculative branch results. This
guarantees that each prediction uses the most up-to-date history, solving the above problems. A new problem
arises however, because every misprediction places an incorrect bit into the history register. Furthermore,
updates from other branches on the wrong path also update the history register, adding further invalid bits.

7

SKADRON, MARTONOSI & CLARK

Unless some fixup mechanism repairs this corruption, the global history becomes unreliable and prediction
accuracy suffers badly. Mispredictions can cascade, as one false history bit triggers subsequent mispredictions

3.2 Results

The prior discussion qualitatively illustrated the benefits of speculative update if implemented with a suitable
fixup mechanism. The results in Figure 2 quantitatively demonstrate the importance of speculative update
for global-history predictors of various sizes, and the overwhelming need for repair mechanisms when doing
speculative update. Each graph in Figure 2 shows, for a particular SPEC benchmark, the relative performance
of (1) speculative history update with the described checkpointing of global histories, (2) commit-time history
update, and (3) speculative update without any fixup. Results are presented as a function of global-history
length for “full” gshare predictors of different sizes (i.e., every bit of history is xor’d against a branch-address
bit). For each configuration, the PHT contains2

history-bits entries, and the processor allows up to 32 in-flight
branches.

Speculative Update vs. Commit-Time Update. The results are compelling: speculative update with fixup
provides speedups of up to 31% (go) compared to commit-time update, with a mean of 10% for SPECint
using a 16-bit/64k-entry gshare predictor. Among the floating-point benchmarks tested, speculative update
has no benefit fortomcatvor mgrid. Hydro2d, on the other hand, benefits by 5-7% from speculative update
for smaller predictors; omitting fixup for this benchmark cancels the benefits of speculative update but does
not reduce performance below that of commit-time update.

The effect is less pronounced forijpeg than might be expected with its poor prediction accuracy, butijpeg
executes fewer branches, meaning that fewer branches are in flight at any one time, and with commit-time
update the history is usually more up-to-date.

We also performed tests for GAg predictors, and found almost identical results.

Speculative Update with and without Fixup. In addition to the demonstrated benefit of speculative up-
date, Figure 2 shows that speculative-update scheme requires fixup after detecting a misprediction. Otherwise
most programs’ performance suffers badly. The effect is so pronounced for many programs (perl andgcc
provide especially dramatic examples) that speculative update without fixup is clearly not sensible—commit-
time update is vastly better than speculative update without fixup—-and we therefore reduced our simulation
requirements by limiting the number of data points gathered for no fixup.

Number of Outstanding Branches. Figure 3 shows the relationship among speculative update with fixup,
commit-time update, and speculative update without fixup as the processor’s in-flight-branch capacity varies.
These simulations were done with gshare and a 16-bit global history but an infinite-sized PHT, to focus on
the role of in-flight branches and avoid artifacts from PHT aliasing. At a value of 1, each branch commits
before the next can be fetched, so speculative update has no effect. Organizations that permit a very small
number of in-flight branches are of course untenable, since typical programs fetch many new branches before
previous ones can traverse the pipeline, and so frequent stalls would result. We nevertheless include these
configurations to more fully map out the shape of the curves.

As expected, the results show that as more branches can be in flight simultaneously, commit-time global
history becomes more out-of-date, making speculative update more beneficial. This trend largely flattens out
at sufficiently high in-flight capacities of 4–8 branches for the integer programs.Hydro2dbehaves similarly,
although the effect is less pronounced, and it takes advantage of a larger in-flight capacity: the plateau occurs
at 20 in-flight branches.Tomcatvandmgrid also take advantage of large in flight capacities, and as in the
previous figure, are indifferent to the update timing.

8

SPECULATIVE UPDATES OFLOCAL AND GLOBAL BRANCH HISTORY:A QUANTITATIVE ANALYSIS

0

1

2

3

speculative update,
with fixup

commit-time update

speculative update,
no fixup

Go

0

0.5

1

1.5

2

2.5

3

10 15 20 25
global history size

IP
C

M88ksim

0

0.5

1

1.5

2

2.5

3

10 15 20 25
global history size

IP
C

Gcc

0

0.5

1

1.5

2

2.5

10 15 20 25
global history size

IP
C

Compress

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 15 20 25
global history size

IP
C

Xlisp

0

0.5

1

1.5

2

2.5

3

10 15 20 25
global history size

IP
C

Ijpeg

0

0.5

1

1.5

2

2.5

3

3.5

10 15 20 25
global history size

IP
C

Perl

0

0.5

1

1.5

2

2.5

3

10 15 20 25
global history size

IP
C

Vortex

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 15 20 25
global history size

IP
C

Tomcatv

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 15 20 25
global history size

IP
C

Hydro2d

0

0.5

1

1.5

2

2.5

3

3.5

10 15 20 25
global history size

IP
C

Mgrid

0

0.5

1

1.5

2

2.5

3

10 15 20 25
global history size

IP
C

Figure 2: Performance of a “full” gshare branch predictor as a function of size and history-update policy.
The x-axis shows global-history length, and the PHT contains2

history-bits2-bit counters. The curves
coincide for tomcatv and mgrid. Results were obtained with 32 in-flight branches allowed.

9

SKADRON, MARTONOSI & CLARK

0

0.5

1

1.5

2

2.5

speculative update,
with fixup

commit-time update

speculative update,
no fixup

Go

0

0.5

1

1.5

2

2.5

0 4 8 12 16 20 24 28 32
in-flight branches

IP
C

M88ksim

0

0.5

1

1.5

2

2.5

3

0 4 8 12 16 20 24 28 32
in-flight branches

IP
C

Gcc

0

0.5

1

1.5

2

2.5

0 4 8 12 16 20 24 28 32
in-flight branches

IP
C

Compress

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 4 8 12 16 20 24 28 32
in-flight branches

IP
C

Xlisp

0

0.5

1

1.5

2

2.5

3

0 4 8 12 16 20 24 28 32
in-flight branches

IP
C

Ijpeg

0

0.5

1

1.5

2

2.5

3

3.5

0 4 8 12 16 20 24 28 32
in-flight branches

IP
C

Perl

0

0.5

1

1.5

2

2.5

3

0 4 8 12 16 20 24 28 32
in-flight branches

IP
C

Vortex

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 4 8 12 16 20 24 28 32
in-flight branches

IP
C

Tomcatv

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 4 8 12 16 20 24 28 32
in-flight branches

IP
C

Hydro2d

0

0.5

1

1.5

2

2.5

3

3.5

0 4 8 12 16 20 24 28 32
in-flight branches

IP
C

Mgrid

0

0.5

1

1.5

2

2.5

3

0 4 8 12 16 20 24 28 32
in-flight branches

IP
C

Figure 3: Performance of a gshare branch predictor as a function of the maximum number of in-flight
branches (both conditional and unconditional) permitted in the processor. All results in these
graphs were obtained with a 16-bit gshare organization, but with an alias-free PHT.

10

SPECULATIVE UPDATES OFLOCAL AND GLOBAL BRANCH HISTORY:A QUANTITATIVE ANALYSIS

3.3 Fixup Mechanisms

Given the benefits of speculative update and the need for history fixup after a misprediction, this section
explores how to implement fixup.

Because the processor squashes all instructions after a branch misprediction, it is sufficient to find a way
to restore the history that existed immediately before the misprediction occurred, and then update that history
with the correct branch outcome (so that the mispredicted branch’s correct outcome appears in the history).
During the time between a misprediction and its detection, branches on the mispredicted path see corrupted
history, but this is harmless because these wrong-path instructions are squashed. After the misprediction is
detected and the history repaired, fetch is redirected to the correct path, and subsequent branches see correct
history. If an earlier misprediction eventually resolves, it replaces the history register’s contents with its own
corrected outcome. In all this, PHT update can still take place at commit time.

Two basic techniques provide perfect fixup, in which every branch on a correct path sees the correct and
up-to-date branch history, both mentioned in [15]. The first saves prior values of the global-history register,
and maintains the most recent, speculative history in the register. The second only updates the register
when the branch commits, and speculative history values are maintained separately, requiring the predictor
to choose among two possible sources as the most up-to-date history.

History-Based. In the first case, speculative updates modify the global-history register. Before the regis-
ter’s contents are modified, however, they are saved, for example at the tail of anoutstanding branch queue
or OBQ. This queue records prior history-register contents for all outstanding branches, in the order those
branches were fetched. Predictions always read the global-history register, and committing a branch merely
discards the head of the OBQ. Fixup after a misprediction requires (1) a lookup in the OBQ to identify the
misprediction’s entry, (2) discarding subsequent entries, (3) restoring the global-history register’s contents to
their state just prior to the misprediction, and (4) adding the correct outcome of the mispredicted branch to
the global-history register. Step 2 can be done in conjunction with steps 3 and 4. See Figure 4.

Step 4 can be done at prediction time instead, where it is not in the critical path and could be allowed to
overlap into the next cycle. This entails saving in the OBQ not the global-history-register contents that existed
just before the speculative update was made, but the corrected outcome that would have to be computed in
step 4. This is achieved by shifting the global-history register’s contents one position and shifting in the
opposite of the branch’s predicted outcome. (Because if the branch is eventually found to have mispredicted,
the correct result will be the prediction’s opposite.) See Figure 5.

Because a particular branch might appear several times in the OBQ (e.g., a tight loop), the branch’s
instruction-window or active-list entry should be tagged with its OBQ entry, so that step 1 above squashes
the correct portion of the OBQ. Alternatively, the slightly longer global-history value can be directly saved
in the instruction window, omitting the need for the OBQ. Jourdanet al. [15] describe this and also propose
what is probably the most efficient alternative: using a wider global-history register which saves older history
bits that would otherwise be discarded. Prediction now entails masking off the older bits; commit takes no
action, and recovery shifts the register contents to the right, discarding speculative bits, and also inverts the
bit corresponding to the mispredicted branch. This shift-recovery scheme requires computing the right-shift
distance (the number of speculative bits to discard) at misprediction-recovery time. This in turn requires
tagging branches with a counter, and computing the difference between the mispredicted branch’s counter
value and the most recently assigned one.

As mentioned earlier, the Alpha 21264 performs speculative update for the global-history component of
its predictor. Fixup is achieved using an OBQ that stores prior values [11].

Regardless of the particular history-based technique used, the actions taken on the critical path for the
common case, the prediction step, are unaffected. Misprediction recovery now requires restoring the global-
history register, but this can be done in parallel with other actions required during recovery.

Future-Based. Instead of checkpointing the global-history register in one of these ways, speculative up-
dates can place the speculatively-updated history in the OBQ. This future-based mechanism uses the global-

11

SKADRON, MARTONOSI & CLARK

branch address

global history xor

PHT

OBQ

Prediction

global history

OBQ

Recovery

global history

discard
saved value

Commit

insert
prior value
into OBQ

update

speculatively update
global history with
predicted branch outcome

restore
corrected
history

discard
wrong−
path
entries

(in−order) (in−order)

Figure 4: Checkpointing- or history-based fixup for a global-history predictor. On a prediction, the current
global history is saved in the OBQ, then updated with the predicted branch outcome. At commit,
the saved global history can be discarded. When recovering from a misprediction, wrong-path
saved histories are discarded, and the history that existed just before the misprediction is restored
and updated with the correct branch outcome.

global history

OBQ

shift in
result

correct
branch
result

0100011
0

1000110

(a)

OBQ

0100011

(b)

1000110

shift in
result

predicted
branch
result

0 1

Figure 5: Two techniques for obtaining the corrected outcome at fixup. (a) The OBQ saves histories, and
shifts in the correct branch result at misprediction-recovery. (b) The OBQ saves already-corrected
histories; this works because the saved values are only used after a misprediction. Here the pre-
dicted direction was taken, but the branch was in fact not taken. In both (a) and (b), the bold lines
at the left of the diagram indicate work at misprediction-recovery time.

history register only to store the committed history. The operation is slightly more involved than an OBQ that
saves prior global histories and the associated alternatives discussed above, because a prediction might find
the most up-to-date history in one of two places.

Making a prediction requires determining whether the OBQ contains any speculative histories; if so, the
prediction uses the tail—the most recently created speculative history—of the OBQ, and if not, the prediction
uses the global-history register. Committing a branch promotes the OBQ’s head to the global-history register,
as the new committed history. Fixup still requires knowing the mispredicted branch’s corresponding OBQ

12

SPECULATIVE UPDATES OFLOCAL AND GLOBAL BRANCH HISTORY:A QUANTITATIVE ANALYSIS

entry, discarding entries that follow the mispredicted branch, and updating with the correct outcome the OBQ
entry associated with the mispredicted branch. This corrected result eventually propagates to the front of the
queue and commits into the history register. As with the prior-history OBQ, the OBQ can be dispensed with
by storing its contents in the instruction window.

Although the instruction window or active list provides an alternative location for maintaining ordered
information about outstanding branches, it is further removed from the branch-history state than a dedicated
structure. Using the instruction window requires extra space in that structure unless the window stores instruc-
tion results. In this case, if branches have no architectural results, the result field can store fixup information.
Another location where history values might be stored is with shadow register maps, if the processor uses
them to avoid associative lookups during register access.

The drawback to the future-based technique is that it may lengthen the critical path in the common case,
the prediction step. Instead of just reading the global-history register and sending it to the XOR to be com-
bined with the branch address, the predictor must see whether the OBQ has any entries (a simple Boolean
test) and then choose whether the value sent to the XOR comes from the history register or from the OBQ
(a multiplexor). Recovery after a misprediction is slightly simpler, on the other hand. Despite these timing
considerations, the chief reason to consider future-based fixup for global history is that it dovetails well with
the best mechanism for fixing up local history, as the next section describes.

OBQ Size. An OBQ—whether used for the history- or the future-based technique—requires only a small
amount of extra hardware. For each outstanding branch, the queue contains a history value. Because branches
are tagged with OBQ indexes, no tags need to be saved in the queue. The queue’s depth is determined by the
maximum number of outstanding branches. If 20 branches can be outstanding and the global-history register
is 12 bits long, as in the Alpha 21264 [11], this queue requires just 240 bits. The OBQ could be made shorter
than the maximum number of outstanding branches if it stores prior history values. Although some state is
lost, this state is only needed to recover from a misprediction, so no harm occurs if mispredictions do not
occur in conjunction with dropped values. Since the OBQ is so inexpensive (and it can be dispensed with if
history values are saved in the instruction window), we choose not to further explore this truncated version
of the OBQ.

4. Speculative Update for Local History

4.1 The Need for Speculative Update

Local-history based predictors like PAg3 or PAs4 use a table of history registers (thebranch history table, or
BHT) instead of a global register. Typically, the branch address is used to index this table, producing a branch-
specific history pattern that can then be used to index the PHT. Correlation among different branches does not
occur in local-history predictors unless branches happen to alias to the same history-table entry. Local history
benefits branches that follow a reliable pattern, and especially those that do not occur frequently enough for
the global-history register to capture the pattern (e.g.non-innermost loop branches). Local-history-based pre-
diction is of interest because it substantially outperforms global-history prediction for some benchmarks [23],
especially when mechanisms for reducing or eliminating aliasing in the BHT are assumed [24].

In a global-history prediction scheme, flaws in the history register (stale state or corruption) potentially
harm every subsequent branch: every branch reads the now-inaccurate global-history register. In a local-
history scheme, on the other hand, a flaw in some BHT entry affects only the branches reading that particular
entry. But multiple instances of the same branch instruction can be in flight at one time, and with commit-
time update, the value read from the BHT can therefore be stale. As one simple example, consider a short
loop with a short iteration count. Local prediction could ideally identify which iteration is the last. Yet if the
branch-commit latency is too long, earlier iterations may not have updated the predictor by the time the last
iteration of the branch is fetched. The loop should terminate, but the predictor’s stale state does not yet reflect
that, and a misprediction results.

3. Per-address history, Adaptive PHT, Global PHT
4. Per-address history, Adaptive PHT, Set-associative PHT

13

SKADRON, MARTONOSI & CLARK

Our results in this section show that speculative update remains important for local-history predictors—
in fact, sometimes more important than for global-history predictors. Furthermore, if updating the BHT
speculatively, fixup is required, just as with global history. Otherwise mispredicted branches place incorrect
outcomes into the BHT, and other branches along the wrong path also put their results into various BHT
entries. These wrong-path branches are squashed, but squashing does not undo the wrong-path updates to the
BHT, leaving ”extra”, corrupt bits in the BHT from those squashed executions. (In short, speculative update
is not idempotent.) These errors accumulate, and the entire BHT eventually becomes corrupted.

4.2 Results

For a subset of the benchmarks, Figure 6 shows the differences among an idealized, PAs, local-history predic-
tor (1) with speculative update plus fixup, (2) with commit-time update, and (3) with speculative update but
no fixup, all as a function of BHT width. To avoid artifacts from BHT or PHT aliasing in these experiments,
the BHT is infinitely deep and therefore alias-free, and the PHT is held fixed at 1 M entries. To see the effect
of update timing on more realistic configurations, Figure 7 repeats the same experiments, but this time with a
more realistic PAg organization consisting of a BHT containing 1 K entries and a PHT containing2

history-bits

entries. The 1 K-entry BHT was chosen to match the size of the BHT in the local-history component of the
Alpha 21264’s hybrid predictor [10, 11].

Once again, the results make clear the importance of speculative update with repair. In most cases,
speculative update matters less for local-history predictors than for global-history, but the superiority of
speculative update with fixup is nevertheless clear. Forxlisp, speculative update actually helps local history
more than global history, and—when the BHT and PHT are both large and unlikely to suffer aliasing—
speculative update also matters more for local than global form88ksimandperl.

The next set of experiments explores the relationship between BHT depth and update timing. Figure 8
compares the same update schemes for different BHT depths, with a width of 20 history bits. As in Figure 6,
the PHT size is held fixed at 1 M entries. (This means that the 20-bit-history values in Figure 6 are the same
as the “Inf” BHT values in Figure 8. In addition, since speculative update without fixup has already been
shown to perform terribly, we simply omit that curve from Figure 8.) It turns out that, form88ksim, xlisp, and
perl, the impact of speculative update is not at all sensitive to the number of BHT entries. This is no surprise,
given those programs’ small static footprints. In contrast, update timing is sensitive to BHT size forgo and
gcc, which have larger static footprints.

Speculative update is more sensitive to the history width stored in the BHT—Figures 6 and 7. But specu-
lative update is most sensitive to PHT size and the degree of PHT aliasing. This can be seen in the difference
between the results for an idealized PAs (Figure 6) and for PAg (Figure 7). PHT size itself probably matters
less than the degree of PHT aliasing, which is actually more severe in Figure 7 than necessary: the PHT is in-
dexed only by the history string, without any anti-aliasing techniques. PHT aliasing corrupts the 2-bit-counter
values and generates mispredictions, regardless of update timing. As aliasing is reduced, the consequent mis-
predictions are eliminated, and this exposes opportunities for update timing to make a difference.

It was mentioned earlier that a stale global history potentially affects all subsequent branches. But for a
local-history predictor—even with 20 or 30 outstanding branches—only a subset of the BHT contains stale
state. Branches using entries that do not correspond to these in-flight branches see completely up-to-date
state. Predictions that use those entries are therefore unaffected by the choice of update timing. This effect
explains why speculative update generally matters less with local-history predictors than with global-history.
The same effect probably explains why update timing shows sensitivity to BHT depth forgo andgcc. Small
BHTs have more aliasing; some BHT entries are already corrupted by aliasing; and in those cases, update
timing is irrelevant. Larger BHTs suffer less aliasing; update timing has more effect; and so late update is
more harmful.

In Figure 6, the no-fixup case is especially sensitive to history width. This is most likely because, without
fixup, any corrupted BHT entries stay corrupted until the invalid history bits are shifted out. As the history
width grows wider, this takes longer; indeed, some BHT entries may never become clean if later mispredic-
tions add additional corrupted history before earlier, corrupt bits can be shifted out. In Figure 7, on the other

14

SPECULATIVE UPDATES OFLOCAL AND GLOBAL BRANCH HISTORY:A QUANTITATIVE ANALYSIS

0

1

2

3

speculative update,
with fixup

commit-time update

speculative update,
no fixup

Go

0.7

1.0

1.3

1.6

1.9

2.2

2.5

2.8

3.1

4 8 12 16 20
BHT history width

IP
C

M88ksim

0.7

1

1.3

1.6

1.9

2.2

2.5

2.8

3.1

4 8 12 16 20
BHT history width

IP
C

Gcc

0.7

1

1.3

1.6

1.9

2.2

2.5

2.8

3.1

4 8 12 16 20
BHT history width

IP
C

Xlisp

0.7

1

1.3

1.6

1.9

2.2

2.5

2.8

3.1

4 8 12 16 20
BHT history width

IP
C

Perl

0.7

1

1.3

1.6

1.9

2.2

2.5

2.8

3.1

4 8 12 16 20
BHT history width

IP
C

Figure 6: Performance of a PAs branch predictor as a function of BHT history width and history-update
policy, for a BHT with infinitely many entries. The x-axis shows the history width. The PHT is
held fixed at 1 M entries, regardless of BHT width.

0

1

2

3

speculative update,
with fixup

commit-time update

speculative update,
no fixup

Go

0.7

1.0

1.3

1.6

1.9

2.2

2.5

2.8

3.1

4 8 12 16 20
BHT history width

IP
C

M88ksim

0.7

1

1.3

1.6

1.9

2.2

2.5

2.8

3.1

4 8 12 16 20
BHT history width

IP
C

Gcc

0.7

1

1.3

1.6

1.9

2.2

2.5

2.8

3.1

4 8 12 16 20
BHT history width

IP
C

Xlisp

0.7

1

1.3

1.6

1.9

2.2

2.5

2.8

3.1

4 8 12 16 20
BHT history width

IP
C

Perl

0.7

1

1.3

1.6

1.9

2.2

2.5

2.8

3.1

4 8 12 16 20
BHT history width

IP
C

Figure 7: The same experiment as above, but for a PAg configuration consisting of a BHT with 1 K entries
and a PHT with2history-bits entries. No data is presented for a history width of 4, because the PHT
would only contain 16 entries.

15

SKADRON, MARTONOSI & CLARK

Go

1.8

1.9

2

2.1

2.2

2.3

2.4

1k 2k 4k 8k 16k 64k Inf
BHT size

IP
C

M88ksim

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

1k 2k 4k 8k 16k 64k Inf
BHT size

IP
C

Gcc

1.5

1.6

1.7

1.8

1.9

2

1k 2k 4k 8k 16k 64k Inf
BHT size

IP
C

Xlisp

1.9

2.1

2.3

2.5

2.7

2.9

3.1

1k 2k 4k 8k 16k 64k Inf
BHT size

IP
C

Perl

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

1k 2k 4k 8k 16k 64k Inf
BHT size

IP
C

1.41.61.8

speculative update,
with fixup

commit-time update

Figure 8: Performance of a PAs branch predictor as a function of BHT size and history-update policy, for
a 20-bit-wide BHT. The x-axis shows the number of BHT entries; the PHT is held fixed at 1 M
entries The trends are similar for 10-bit-wide BHTs, but as suggested by Figure 6, the gap between
the curves is smaller.

0

0.5

1

1.5

2

speculative update,
with fixup

commit-time update

speculative update,
no fixup

Go

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 4 8 12 16 20 24
in-flight branches

IP
C

M88ksim

0

0.5

1

1.5

2

2.5

3

0 4 8 12 16 20 24
in-flight branches

IP
C

Gcc

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 4 8 12 16 20 24
in-flight branches

IP
C

Xlisp

0

0.5

1

1.5

2

2.5

0 4 8 12 16 20 24
in-flight branches

IP
C

Perl

0

0.5

1

1.5

2

2.5

0 4 8 12 16 20 24
in-flight branches

IP
C

Figure 9: Performance of a PAg branch predictor as a function of the maximum number of in-flight branches
permitted in the processor. The BHT is infinitely large and stores 10-bit histories. The PHT here
contains 1 K entries. Forperl, the curves for commit-time update and speculative update without
repair coincide.

16

SPECULATIVE UPDATES OFLOCAL AND GLOBAL BRANCH HISTORY:A QUANTITATIVE ANALYSIS

hand, the no-fixup case is consistently terrible. We again attribute this to the small BHT. Regardless of history
width, the aliasing in the BHT means that many entries are likely to be indexed by more than one branch, and
therefore likely to be corrupted by speculative update without repair.

Figure 9 shows the impact of different numbers of in-flight branches. As with the analogous global-
history results, speculative update has more impact as the number of permitted in-flight branches increases.
With commit-time update, the more branches in flight, the more out-of-date the history. Just as with global
history, this trend reaches a plateau at 4–8 branches.

4.3 Fixup Mechanisms

Fixup for local-history-based predictors is more difficult. Unlike global history, where only a single register
needs repair, potentially many BHT entries can be corrupted. Four repair schemes are possible, of which only
one, the last, provides both time- and space-efficient fixup.

Checkpointing. First and most unreasonable is checkpointing, in which shadow copies of the BHT are
maintained. Each shadow copy shows the BHT’s state prior to a current in-flight branch. If that branch
resolves without misprediction, it discards the associated checkpoint. In case of a misprediction, it restores
the BHT and then adds the correct result for the branch in question. Both saving and restoring the BHT
may take several cycles due to the quantity of information involved. This delays subsequent predictions
unless some number of speculative bits are tolerated in the checkpoints, but that mostly defeats the purpose
of checkpointing.

History File. A second possibility is a history file, whose size is a function of the number of outstanding
branches and not of the entire BHT. The history-file mechanism resembles the favored scheme for global-
history fixup, using an OBQ. It is essentially a selective form of checkpointing. Figure 10 shows its operation.

branch address

PHT

BHT

OBQ

insert
prior value
into OBQ

update

speculatively update BHT
entry with predicted
branch outcome

BHT

OBQ

1
2

3 mispredicted branch

Prediction Recovery

Figure 10: Repairing the BHT after a misprediction using a history file. The OBQ stores prior BHT entries
that would otherwise have been overwritten. Recovery begins at the OBQ’s tail and works forward
to the mispredicted branch.

17

SKADRON, MARTONOSI & CLARK

Each prediction saves the contents of the selected BHT entry before updating that entry with the speculative
prediction result. This save can be done in parallel with the PHT lookup, and otherwise prediction remains
unchanged. When the branch commits, its saved entry resides at the OBQ’s head and can be discarded.
Unfortunately, recovering from a misprediction still entails a substantial amount of work. Beginning at the
tail (which corresponds to the most recent speculative update to the BHT), BHT entries must be repaired
one-by-one until the mispredicted branch’s OBQ entry has been processed (it can be identified either with
a prioritized associative lookup or with an OBQ tag on the branch instruction). The BHT now contains the
same state as before the misprediction, and the mispredicted branch can update its BHT entry with its correct
result. The mispredicted branch’s OBQ entry should be saved, because it might already be on a wrong path,
in which case subsequent fixups will need that information to perform further undo operations. This is an
example of how out-of-order branch resolution affects the fixup mechanism.

As with history-based fixup for global prediction, the critical path for the common case of making a
prediction should not be affected. Unfortunately, the repair steps takes place one-by-one, because a particular
location might require several undo steps. (Only the oldest value needs to be replaced, but the history values
need to be maintained in the proper order.) Furthermore, the BHT has a limited number of ports. Even
though mispredictions are not common-case events, they occur sufficiently often that the consequent delay
significantly harms overall performance, as shown by Butler and Patt [16].

The history file’s contents could be condensed by just storing the oldest bit that was discarded by the
speculative update’s left shift. Repairing an entry consists of a 1-place right shift and appending the discarded
bit into the leftmost place. Alternatively, the saved history values can be maintained in the reorder buffer in
place of the destination register contents, given the proper type of reorder buffer. Recovery becomes even
more complex in terms of finding wrong-path branches among other reorder buffer contents, as every wrong-
path branch must repair the state that it modified.

Future File. Finally, instead of checkpointing the local-history values, speculative updates can place the
speculatively-updated history values not in the BHT, but in the OBQ, which then serves as a future file. The
BHT thus always contains committed histories. As with future-based fixup in a global-history predictor, the
most up-to-date history can now reside in two places: prediction must determine whether to obtain the history
value from the BHT or from the future file. Branch commit promotes the oldest speculative history from the
OBQ into the BHT. Except in an unordered future file, recovery becomes quite easy: future-file entries after
the mispredicted branch are simply discarded, and the mispredicted branch’s future-file entry has its last bit
(the one corresponding to the misprediction) reversed. When the mispredicted branch commits, the correct
value is promoted to the BHT.

There are several major variations on this scheme. Least attractive is an “unordered” future file, organized
like the BHT, as in Figure 11. The file has as many entries as the BHT, and is possibly several entries wide
to accommodate multiple pending speculative updates. In other words, each BHT entry has a dedicated
row in the future file. Finding a branch’s entry is easy; as with the BHT, the index can be computed from
the branch address, and neither associative lookup nor tag on the instruction are needed. This structure is
potentially large, although the space can be reduced by only placing speculative bits in the future file, while
the committed portion of the history is taken from the BHT. This, however, adds some further complexity to
prediction, as the BHT’s value must be shifted left by however many speculative bits reside in the future file
and then merged with these bits.

A substantial problem with the unordered future file is misprediction recovery. Because this organiza-
tion maintains no ordering among speculative updates, squashing wrong-path information becomes difficult.
This is another example of how out-of-order branch resolution affects the choice of fixup: in-order res-
olution would make this organization more attractive. Waiting until branch-commit or imposing in-order
branch resolution ensures that all future-file contents are from the wrong path, but harms the performance
of all branches, effectively lengthening the misprediction penalty [16]. Discarding the future file’s contents
at misprediction-detect discards needed correct-path state when the misprediction resolves before earlier,
correct-path branches. Tagging entries with unique path identifiers (using the scheme described in [25, 26],
for example), bloats the future file with extra bits and many comparators. Although space considerations pro-

18

SPECULATIVE UPDATES OFLOCAL AND GLOBAL BRANCH HISTORY:A QUANTITATIVE ANALYSIS

branch address

PHT

BHT

merge

shift

FF

Figure 11: The prediction step using an “unordered” future file (FF). This diagram shows a future file that
only stores speculative history bits, instead of entire history values. Here three bits are outstanding
for the BHT entry in question. They are shifted left to accommodate the fourth bit which results
from the prediction underway. Obtaining a PHT index requires left shifting the BHT entry and
merging in the appropriate number of bits from the future file.

hibit our presenting the data here, this unordered organization can, despite its drawbacks, allow speculative
update to slightly outperform commit-time update. It still falls well short of the perfect fixup provided by an
ordered scheme like the one discussed next.

A second choice is to store the speculative histories in the instruction reorder buffer given the proper
type of instruction window, in lieu of the unused destination-register value. This imposes an ordering on the
speculative values, and is similar to maintaining history state in the reorder buffer, as described above. When
recovering from a misprediction, wrong-path values are discarded by the reorder-buffer cleanup process that
discards the instructions following the misprediction. The mispredicted branch’s speculative history is then
corrected, so that the proper history will eventually be committed. The drawback to this choice is that the
prediction step requires a prioritized associative lookup on the branch address in the reorder buffer, to find
the most recent history for a particular branch.

Future File with an OBQ. The best choice is to maintain a future file using an OBQ. Speculative update
values are kept in the OBQ. Prediction requires an associative lookup on the much smaller OBQ; recovery
discards all entries after the mispredicted branch and corrects the mispredicted branch’s entry. See Figure 12.
As with global prediction, the OBQ must keep state for both conditional and unconditional branches.

We advocate the OBQ-based future file because the associative lookup is most likely less expensive than
an associative lookup on the entire reorder buffer, and may well be as fast as indexing the much larger BHT.
If this is true, since the BHT and OBQ lookups are done in parallel, the OBQ/future-file fixup mechanism
only adds one multiplexor to the critical path for making a prediction. The OBQ’s storage requirements are
minimal. Recovery is fast and never loses information; although wrong-path branches may see incorrect
history values, correct-path branches always see correct and completely up-to-date histories.

19

SKADRON, MARTONOSI & CLARK

branch address

PHT

BHT

OBQ

update

BHT

Prediction Recovery

match in OBQ?

most up−to−date
history value

010001

100011

1

100011

OBQ

100011

000111

place speculatively−
updated history
in the OBQ

010001

100010
correct mispredicted
branch’s entry

discard wrong−path
entries

000111

0x444a00

0x444a00 0x444a00

0x444a000x444a00

Figure 12: Repairing the BHT after a misprediction using an OBQ as a future file. The example shows
a prediction (using the history value100011 from the OBQ) of branch 0x4444a00. The new
speculative history,000111 , is added to the OBQ. But the first instance of 0x444a00 was a
misprediction; subsequent OBQ entries are discarded, and the misprediction’s entry is modified
to reflect the correct result. The scheme operates similarly if the OBQ is omitted and the histories
reside in the instruction reorder buffer.

5. Speculative Update with Hybrid Predictors

Previous sections have shown that global and local predictors both benefit from properly fixed-up speculative
updates of history registers. The best performance for each benchmark is sometimes achieved with a global
predictor, and sometimes with a local one. Most programs contain some branches that perform better with a
global-history predictor and others that perform better with a local-history predictor [27], and even individual
branches vary between needing global and local history [28]. So it is tempting to combine both a global-
and a local-history predictor into a hybrid organization [8] that uses, for each branch instance, whichever
predictor has recently been more accurate. The choice between local and global is made by a bank of 2-bit
saturating counters, indexed by the global-history register, as suggested by Chang, Hao, and Patt [12]. When
one predictor is correct and the other incorrect, the counter value is either incremented or decremented, but
does not wrap around (i.e., like the saturating 2-bit counters in the PHT).

Because speculative update and suitable fixup are straightforward for global history, we consider in this
section the impact of speculative update on the local-history component of a hybrid predictor. Our results
suggest that, even though speculative update benefits a stand-alone local-history predictor, it has minimal
benefit for a local-history component that is part of a hybrid predictor.

We consider two hybrid configurations. The first, loosely modeled after the Alpha 21264’s hybrid config-
uration [10, 11], is a finite organization with 12 bits of global history. This makes both the selector table and

20

SPECULATIVE UPDATES OFLOCAL AND GLOBAL BRANCH HISTORY:A QUANTITATIVE ANALYSIS

the gshare PHT 4 K entries. The local component has a 1 K-entry� 10-bit BHT and a 1 K-entry PHT. The
second is an “infinite” configuration. The global history is 20 bits wide, making the selector and the gshare
PHT 1 M entries in length. The local component also uses 20 bits of history and its BHT has an infinite
number of entries. In both cases, the global history (used by both the global-history prediction component
and by the selector) is always speculatively updated and fixed-up.

Finite Infinite
go m88 gcc xlisp perl go m88 gcc xlisp perl

1. hybrid, spec-update 1.61 2.75 1.88 2.51 2.47 2.86 3.05 2.24 2.77 2.70
2. hybrid, late PAg update 1.59 2.75 1.87 2.51 2.47 2.82 3.04 2.25 2.71 2.70
3. gshare component only 1.44 2.51 1.68 2.38 2.09 2.51 2.75 2.15 2.54 2.59
4. PAg only, spec-update 1.53 2.46 1.64 2.26 2.10 2.27 2.97 1.89 2.67 2.50
5. PAg only, late update 1.50 2.42 1.61 1.94 2.06 2.06 2.85 1.89 2.09 2.38
6. equivalent-area gshare 1.61 2.62 1.92 2.47 2.40 na na na na na

Table 3: Hybrid prediction. The table shows that whether the local-history component uses speculative up-
date with fixup (line 1) or just uses commit-time (“late”) update (line 2) has no effect on perfor-
mance. The hybrid organization outperforms both its global component and local component alone
(lines 3 and 4 respectively). Line 5 shows the local component’s performance with just commit-time
update. For the finite case, line 6 shows the performance of a gshare predictor with 14-bit history
and 16 K-entry PHT that uses approximately an equivalent number of bits as the hybrid predictor.

Table 3 shows the results. The hybrid predictor is, as expected, better than either of its components alone
for both finite and infinite configurations (lines 1 and 2 vs. lines 3, 4, and 5). One component captures behav-
ior that the other does not. Curiously, in both cases,the hybrid predictor does not seem to need speculative
update of its local component—even forxlisp, for which local history benefits strongly from speculative up-
date. Those particular branches that the local predictor handles better are apparently ones that are insensitive
to update timing.

This suggests that hybrid organizations need only provide speculative update and the associated fixup
mechanism for the global-history component. The local-history component can be updated at commit time.
This is what the 21264 does [11]. The future file that local-history fixup requires can thus safely be omitted.

6. Conclusions and Future Work

This paper has examined whether to speculatively update branch history in both global-history and local-
history 2-level adaptive branch predictors, and described mechanisms for repairing the speculative history
after mispredictions.

In particular, the data—obtained with cycle-level simulations of eleven SPEC95 benchmarks—show:

� Global-history-based predictors benefit strongly from speculative update.

� Repairing the speculatively-updated history after mispredictions is critically important, and we discuss
practical hardware structures that implement perfect repair.

� Local-history-based predictors also benefit from speculative update, although less than do global pre-
dictors. The benefit increases as the history maintained in the BHT grows wider. Local prediction
has received less attention in the literature, yet with speculative update and sufficiently wide histo-
ries, a more hardware-efficient local scheme outperforms even huge global-history predictors for some
programs [23, 28].

� Repairing the history after mispredictions is again critical for local predictors using speculative update.
The best scheme stores speculative histories in a queue of outstanding branches, and only places com-

21

SKADRON, MARTONOSI & CLARK

mitted values in the BHT. This protects the BHT from corruption, and wrong-path contents can then
easily be discarded. At prediction time, however, the processor must look in both the BHT and the
outstanding-branch queue, requiring at least an extra multiplexor.

� For both global- and local-history predictors, the importance of speculative update increases with his-
tory width, and naturally also increases with the number of in-flight branches.

� Even though local-history predictors benefit from speculative update (xlisp in particular), a hybrid pre-
dictor is insensitive to whether its local-history component is updated speculatively or not. This sug-
gests that hybrid organizations can update the local component at commit time and avoid the hardware
associated with speculative update and fixup.

The data in this paper offer insights to hardware designers regarding the impact of fixup mechanisms in
branch prediction hardware. The results also suggest that due consideration be given to local predictors in
some cases. Finally, to researchers focused on simulation-based studies, the data also highlight the importance
of careful simulation methodology in work involving branch predictors. In particular, researchers should use
care in accounting for speculative-update effects in their simulators and in choosing appropriate hardware
configurations when speculative-update effects are taken into account.

Acknowledgments

We would like to thank Matthew Farrens and the anonymous reviewers for their helpful comments. This
work was supported in part by NSF grantCCR-94-23123, NSF Career AwardCCR-95-02516 (Martonosi),
and an NDSEG Graduate Fellowship (Skadron).

References

[1] T.-Y. Yeh and Y. N. Patt, “Alternative implementations of two-level adaptive branch prediction,” in
Proceedings of the 19th Annual International Symposium on Computer Architecture, pp. 124–34, May
1992.

[2] J. E. Smith, “A study of branch prediction strategies,” inProceedings of the 8th Annual International
Symposium on Computer Architecture, pp. 135–48, May 1981.

[3] Digital Semiconductor,Alpha 21164 Microprocessor: Hardware Reference Manual, Apr. 1995.

[4] MIPS Technologies,MIPS R10000 Microprocessor User’s Manual, June 1995. Version 1.0.

[5] K. Diefendorff, “K7 challenges Intel,”Microprocessor Report, pp. 1, 6–11, Oct. 26 1998.

[6] K. Diefendorff, “Athlon outruns Pentium III,”Microprocessor Report, Aug. 23 1999.

[7] P. Song, “UltraSparc-3 aims at MP servers,”Microprocessor Report, pp. 29–34, Oct. 27 1997.

[8] S. McFarling, “Combining branch predictors,” Tech. Note TN-36, DEC WRL, June 1993.

[9] L. Gwennap, “Intel’s P6 uses decoupled superscalar design,”Microprocessor Report, pp. 9–15, Feb. 16,
1995.

[10] L. Gwennap, “Digital 21264 sets new standard,”Microprocessor Report, pp. 11–16, Oct. 28, 1996.

[11] R. E. Kessler, E. J. McLellan, and D. A. Webb, “The Alpha 21264 microprocessor architecture,” in
Proceedings of the 1998 International Conference on Computer Design, pp. 90–95, Oct. 1998.

[12] P.-Y. Chang, E. Hao, and Y. N. Patt, “Alternative implementations of hybrid branch predictors,” in
Proceedings of the 28th Annual International Symposium on Microarchitecture, pp. 252–57, Dec. 1995.

22

SPECULATIVE UPDATES OFLOCAL AND GLOBAL BRANCH HISTORY:A QUANTITATIVE ANALYSIS

[13] A. R. Talcott, W. Yamamoto, M. J. Serrano, R. C. Wood, and M. Nemirovsky, “The impact of unresolved
branches on branch prediction scheme performance,” inProceedings of the 21st Annual International
Symposium on Computer Architecture, pp. 12–21, Apr. 1994.

[14] E. Hao, P.-Y. Chang, and Y. Patt, “The effect of speculatively updating branch history on branch predic-
tion accuracy, revisited,” inProceedings of the 27th Annual International Symposium on Microarchitec-
ture, pp. 228–32, Nov. 1994.

[15] S. Jourdan, J. Stark, T.-H. Hsing, and Y. N. Patt, “Recovery requirements of branch prediction storage
structures in the presence of mispredicted-path execution,”International Journal of Parallel Program-
ming, vol. 25, pp. 363–83, Oct. 1997.

[16] M. G. Butler and Y. Patt, “A comparative performance evaluation of various state maintenance mecha-
nisms,” inProceedings of the 26th Annual International Symposium on Microarchitecture, pp. 70–79,
Dec. 1993.

[17] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark, “Improving prediction for procedure returns
with return-address-stack repair mechanisms,” inProceedings of the 31st Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, pp. 259–71, Dec. 1998.

[18] The Standard Performance Evaluation Corporation, “SPEC CPU95 Benchmarks.” WWW site:
http://www.specbench.org/osg/cpu95, Dec. 1999.

[19] D. Burger, T. M. Austin, and S. Bennett, “Evaluating future microprocessors: the SimpleScalar tool
set,” Tech. Report TR-1308, University of Wisconsin-Madison Computer Sciences Department, July
1996.

[20] C. Price,MIPS IV Instruction Set, Revision 3.1. MIPS Technologies, Inc., Mountain View, CA, Jan.
1995.

[21] B. Calder and D. Grunwald, “Fast & accurate instruction fetch and branch prediction,” inProceedings
of the 21st Annual International Symposium on Computer Architecture, pp. 2–11, May 1994.

[22] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark, “Branch prediction, instruction-window size,
and cache size: Performance tradeoffs and simulation techniques,”IEEE Transactions on Computers,
vol. 48, pp. 1260–81, Nov. 1999.

[23] T.-Y. Yeh and Y. N. Patt, “A comparison of dynamic branch predictors that use two levels of branch his-
tory,” in Proceedings of the 20th Annual International Symposium on Computer Architecture, pp. 257–
66, May 1993.

[24] S. Kim and G. Tyson, “Analyzing the working set characteristics of branch execution,” inProceedings
of the 31st Annual ACM/IEEE International Symposium on Microarchitecture, pp. 49–58, Dec. 1998.

[25] P. S. Ahuja, K. Skadron, M. Martonosi, and D. W. Clark, “Multi-path execution: Opportunities and
limits,” in Proceedings of the 12th International Conference on Supercomputing, pp. 101–08, July 1998.

[26] A. Klauser, V. Paithankar, and D. Grunwald, “Selective eager execution on the PolyPath Architecture,”
in Proceedings of the 25th Annual International Symposium on Computer Architecture, pp. 250–59,
July 1998.

[27] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt, “An analysis of correlation and predictability: What
makes two-level branch predictors work,” inProceedings of the 25th Annual International Symposium
on Computer Architecture, pp. 52–61, June 1998.

[28] K. Skadron, M. Martonosi, and D. W. Clark, “Alloying global and local branch history: A robust so-
lution to wrong-history mispredictions,” Tech. Report TR-606-99, Princeton University Department of
Computer Science, Oct. 1999.

23

