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Abstract

This paper proposes a new hardware prefetcher that extends the idea of the Global
History Buffer (GHB) originally proposed in [1]. We augment the GHB with several Local
History Buffers (LHBs), which keep the memory access information for selective program
counters. These buffers can then be queried on cache accesses to predict future memory
accesses and enable data prefetching using novel detection schemes. Our trace-driven sim-
ulations show that by using approximately a 4KByte (32 Kbits) storage budget, we can
obtain an average performance improvement of 22% for SPEC2006 benchmark suite on an
ideal out-of-order processor.

1. Introduction

Single-thread performance can be severely impaired by long-latency cache misses. These
cache misses can cause the re-order buffer (ROB) to fill up and allocation to stall for tens
or even hundreds of cycles, blocking forward progress. To address this issue, a large number
of transistors in recent microprocessors is either dedicated to reducing the number of such
misses by enlarging the cache capacity and/or reducing the miss latency via an aggressive
prefetcher. In this paper, we investigate the design of a hardware prefetcher under the
storage budget of 4KB with allowable logic complexity. Our main contributions are as
follows:

1. We identify and classify commonly occuring access patterns of memory instructions.

2. We propose a 4KB hardware prefetcher which demonstrates high effectiveness in data
prefetching.

The rest of the paper is organized as follows. Section 2 details the processor model used
in this study and the performance implications of the said model. Section 3 describes some
of the common access patterns in the SPEC2006 benchmark suite. Section 4 describes the
design of our data prefetching scheme. Sections 5 and 6 explain our original DPC submission
design point and its storage budget. Section 7 discusses of the simulation infrastructure
and our simulation methodology. Section 8 presents other design points of our prefetcher.
Section 10 describes future work while Section 11 concludes.
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2. Performance with Ideal Front-end & Execution Engine

This study focuses on prefetcher design for a processor with a perfect front-end and exe-
cution engine. Such a processor will have an IPC1 equal to its issue width, N, under ideal
conditions. Conditions that cause deviation from ideal IPC include:

1. True dependencies between instructions. For example, if there is a chain of depen-
dencies with the result of the previous instruction providing the source for the next
one, the IPC can be at most 1.

2. Resource constraints. In the microarchitecture there are hardware resources that
instructions need to hold on to for some number of cycles. An example of such a
resource is an entry of the ROB. This entry has to be held on to by an instruction from
the time allocation takes place till the in-order retirement of the instruction. Standard
queuing theory can be applied to each such resource and Little’s Law provides an
upper-bound on the maximum IPC. Let the average number of cycles a resource
needs to be held on to be L and the capacity of such a resource be C. If that is the
case, the IPC is bounded by the following equation:

IPC ≤ C

L
(1)

For example, in the simulated processor used in our study, the ROB is 128 instructions
in capacity (see Table 3. To maintain an IPC of 4, the average lifetime of a ROB entry
must be less than or equal to 32 cycles. The lifetime of a ROB entry is determined
by the instruction’s own latency and the latency of its predecessors (the in-order
retirement requirement forces this). Long-latency cache misses (especially L2 cache
misses) can increase the lifetime of critical microarchitecture structures like ROB
entries, etc. to more than their design point. This will cause IPC degradation in
accordance with Little’s Law.

The condition numbered (1) is a characteristic of the workload and as such cannot be
overcome without using aggressive speculative techniques. The average latency of an in-
struction, however, can be decreased considerably by using an accurate and timely hardware
prefetcher.

The goal of a hardware prefetcher is to minimize the average latency of instructions
thereby increasing IPC. Several metrics can be used to characterize the performance of
prefetchers towards this goal, which are the following:

1. Prefetch coverage: This is the percentage of a program’s memory accesses that were
initiated by the prefetcher. Percentage reduction in cache misses is directly related to
prefetch coverage.

2. Prefetch accuracy: This is the percentage of prefetch requests that were later accessed
by the program.

1. By instructions we mean the smallest unit of execution in the microarchitecture, which may be micro-ops.
IPC is also used in the same context (instructions or micro-ops per cycle).
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3. Prefetch timeliness: The prefetcher should issue prefetch requests at a time such that
the cache line arrives just in time for the actual access. Timeliness can be measured
in terms of the average prefetch-to-use cycles or the median prefetch-to-use cycles or
some other metric.

In this work, we study the design of a global and local history based pattern-detecting
hardware prefetcher with 4KB of storage regardless of logic complexity. The goal of this
prefetcher is to improve the IPC of the single-threaded workloads running on the processor
by reducing the number of long-latency cache misses.

3. Motivation & Observed Access Patterns

To gain an understanding of the cache behavior of modern workloads and glean useful
information for effective data prefetching, we used traces generated from the SPEC2006
benchmark suite [2]. For each run, we skipped the first 40 billion instructions and used the
next 100 million instructions to analyze the memory access characteristics of the bench-
marks2. As part of an initial study, we investigated the limit of a prefetching scheme by
running simulations with a zero-latency L2 and/or DRAM memory3. This gives us an
approximate upper-limit on what an ideal prefetcher could achieve. Our simulations were
run for three different configurations suggested in the DPC-1 infrastructure and recapped
below:

1. Configuration 1 simulated an ideal 4-issue, out-of-order processor with no branch
hazards. The L2 cache was 2 MB and bandwidth to the caches and memory was
unlimited.

2. Configuration 2 simulated the same processor as Configuration 1, but with limited
L2 bandwidth of 1 request per cycle and limited DRAM memory bandwidth of one
request every 10 cycles.

3. Configuration 3 simulated the same processor as Configuration 2, but with a 512KB
L2 cache.

Figure 1 shows the normalized performance results when parts of the memory-hierarchy
are replaced by their zero-latency counterparts (but are still subject to bandwidth con-
straints). This shows that L2 cache misses that take over 200 cycles (200 cycles DRAM
latency + 20 cycles L2 latency + latency because of L2 queue waiting) to get back from
memory are a major performance bottleneck (in contrast to L1 cache misses that hit the
L2 cache). This makes sense because for our ideal out-of-order processor, the L1 misses
that are L2 hits are likely to be tolerated due to the nature of out-of-order execution. Long
latency L2 misses, however, can cause the ROB to become full and instruction allocation
to stall for a large number of cycles.

2. We did not skip the first 40 billion instructions for 998.specrand, 999.specrand, and 481.wrf because these
programs did not have enough instructions.

3. Note that bandwidth limitations on the L2 cache and DRAM memory still applied in configurations 2
and 3.
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For a more quantitative analysis, we note the following. For configuration 1 where the
L2 cache lookup bandwidth is unlimited, in our simulated processor with perfect front-end,
L1 misses that are L2 hits will have a ROB entry lifetime equal to 15 (pipeline depth) +
20 (L2 cache hit latency) = 35 cycles. As shown above, this is within 10% of the lifetime
required for maximum throughput (32 as shown in section 2). With this re-order buffer
entry lifetime, the IPC limit imposed by memory sub-system (by Little’s Law) is:

IPCmemory sub−system limit =
ROBsize

ROBlifetime

=
128

35
= 3.65

(2)

This is the IPC limit imposed by the memory sub-system for configuration 1 assuming
all accesses are L1 misses and L2 hits. With L2 misses converted to hits, SPEC 2006
benchmarks are often limited by non-memory-subsystem constraints.

However, in configurations 2 and 3, for L1 misses that are L2 hits, the lifetime of a
ROB entry will be increased because cycles will have to be spent waiting in the L2 queue
before the cache look-up is done4. The queuing delay is present because the L2 cache can
be looked-up only once every 10 cycles. This increased lifetime will result in degradation
of IPC in accordance with Little’s Law. However, most of the IPC degradation will still be
because of long-latency L2 cache misses. The latency of such misses is usually more than
220 cycles and will increase the lifetime of ROB entries of the instruction that caused the
miss and the following instructions.

3.1. Observed Access Patterns

During our initial study, we collected memory access traces from the SPEC2006 benchmarks
and made the following prefetch-related observations:

1. Using merely the L2 miss addresses observed from the issue stage of an out-of-order
processor might not be the best way to train a prefetcher. These addresses may not
appear to contain a regular pattern to the prefetcher in certain cases.

2. It is beneficial to use both cache hits and misses of a program to train the predictor’s
state. By training a prefetcher using only the observed miss addresses, as some prior
work did, the prefetcher may not be able to detect any useful pattern.

3. It is beneficial to train the prefetcher with both the local (per PC) and global access
information. Some access patterns are not visible at the global level, while others may
only be visible if the prefetcher organizes them by the program counter (PC).

4. It might be helpful to classify accesses into regions (i.e., spatially by memory ad-
dresses) and detect patterns within their respective regions. For example, in 470.lbm

4. An interesting study would be on the percentage of time spent in the cache lookup vs. in the L2 queue
for L1 cache misses. Unfortunately, because of the closed nature of the simulator, we could not perform
this study.
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Figure 1: Simulation results showing normalized performance (IPC) when different parts of
the memory hierarchy are replaced by their ideal counterparts. The performance
here is an average over 3 configurations explained in section 3. An accurate L2
prefetcher can provide a significant portion of the available performance oppor-
tunity.

and 462.libquantum, the stride can be easily detected if the accesses are binned accord-
ing to region. This is because a single instruction can access multiple regions within
a period of hundreds of cycles. This might be more visible in a CISC architecture
because of complex instructions that generate more than a single memory uop (ex-
ample: the movs family of instructions in x86 decomposes into at least two memory
uops that move data from one memory location to another).

5. It might be beneficial to trigger a prefetch request upon each cache access (regardless
of whether it is a hit or miss) rather than only on a cache miss. This is especially
useful if the cache access was to a line that the prefetcher brought in.

6. The consecutive memory accesses of some benchmarks follow a exponentially increas-
ing stride. For example,the 429.mcf has accesses with these deltas (in terms of cache
lines): 6, 13, 26, 52, etc. This pattern may be observed when the program is chasing
pointers that are part of a tree data structure (example: going down a heap data
structure laid out as an array).

7. If the logic complexity is not too prohibitive, the prefetcher should detect patterns of
memory accesses that might have noise in them. Sometimes programs may not access
memory in a completely regular fashion; however, patterns can still be detected if the
detection criteria is relaxed.

8. Sometimes because of instruction scheduling optimizations or otherwise, simple pat-
terns may be obscured by “noise”. In this case, if the complexity is not too high,
a prefetcher may try to do pattern detection using a brute force algorithm. For ex-
ample, in terms of cache lines a program might access 4, 8, 9, 12, 14, 16, etc. The
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Figure 2: Block diagram of our proposed prefetcher. Each GHB stores n memory access
addresses made by the processor. Each LHB stores, along with the PC value,
access addresses made by the instruction at that particular PC. The array of LHBs
is a fully associative structure, looked up by PC. For our submission, n=128, l=24
and m=32. The prefetch cache is a 32-entry fully associative structure that stores
previously issued prefetches.

prefetcher may detect that the program is accessing cache lines with a delta of 4 with
some “noise” mixed in and could prefetch lines 20, 24, etc.

4. Prefetcher Design

A hardware prefetcher typically stores some state internally that is derived from past ac-
cesses. The current memory accesses are then used along with this state to predict the
future access patterns of the program. To train the state of the prefetcher, the simulation
framework provided cache line addresses, instruction sequence numbers, PC of the instruc-
tion that made the access and whether the access was L1/L2 hit/miss. Typical prefetchers
store only a small part of this input as internal state. This is to reduce complexity (which
helps lower the prefetcher prediction latency in a real hardware design) and storage re-
quirement. Motivated by the observations from memory-bound benchmark programs in
SPEC2006, we decided to store almost all the input provided by the simulation framework
in various History Buffers using our 4KB budget. We employ both a single large Global
History Buffer (GHB) and multiple smaller Local History Buffers (LHBs) to store the input
from the simulator every cycle.

The GHB tracks the most recent n memory accesses (both loads and stores) in a program
while each of the LHBs tracks m accesses performed by l a particular PC (each LHB is
tagged with a 32-bit PC value). Along with the access address, we also store the hit/miss
status of the access in the history buffers. This list of LHBs is maintained as a fully
associative cache with LRU replacement. The number of valid entries in the GHB or LHBs
is not stored anywhere - instead, an invalid address (CacheAddr t)(NULL) or (CacheAddr t)(-
1) is inserted after the last valid address. A block diagram of our prefetcher is given in Figure
2.

When an memory access is requested, the processor looks up the GHB and the LHB. An
access address is only added if it is not found in these buffers. If the PC is not found in the
list of LHBs, the least-recently-used LHB is selected and the access address is stored as the
first entry of the LHB (further memory accesses from the same PC will be entered in this
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Algorithm 1 The repeating pattern detection algorithm. After a repeated pattern is
detected, a score can be assigned based on the length of the repetition (the variable labeled
max in FindRepeatingPattern).

1: procedure FindRepeatingPattern(deltas, N)
2: max← 0
3: for i← N − 1, 1 do
4: currentV alue← CalcRepeatingScore(deltas, i,N)
5: if currentV alue > max then
6: max← currentV alue
7: maxI ← i
8: end if
9: end for

10: ◃ The length of the pattern repeats is now in max. If this greater than a threshold,
prefetch is issued.

11: end procedure

12: procedure CalcRepeatingScore(deltas, start, end)
13: length← end− start
14: totalScore← 0
15: currStart← start
16: currEnd← end
17: while currEnd > 0 do
18: currentScore← Compare(deltas, start, end, currStart, currEnd)
19: totalScore← totalScore+ currentScore
20: if curentScore < length then
21: return totalScore
22: end if
23: currEnd← currEnd− length
24: currStart← currStart− length
25: end while
26: return totalScore
27: end procedure

28: procedure Compare(deltas, start, end, currStart, currEnd)
29: score← 0
30: i← 0
31: while deltas[currEnd−i] == deltas[end−(i% (end−start))] && currEnd−i >= currStart

do
32: score← score+ 1
33: i++
34: end while
35: return score
36: end procedure

7
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particular LHB.). The LHB is also tagged with the PC of the memory access instruction.
If, however, there is a tag match of the PC in the list of LHBs, the memory access address
is simply added to the circular buffer associated with the PC.

Either buffer, the GHB or a particular LHB, provides rich history information that can
be used to trigger prefetches when an address is added to it. Various forms of pattern-
detection logic can be fed by these buffers, for example:

1. Access Delta Inspection Logic: Inspects the deltas of accesses including both hits and
misses in the recent past in a 64KB region around the latest access to see if there is
a repeatable pattern. If so, prefetches for the next addresses following the pattern
might be generated. A brute-force method is employed to find the repeatable pattern
in the deltas. This method is shown in Algorithm 1. The algorithm attempts to find
repeating sequences of deltas in the accesses and assigns them a score value based on
how many times the pattern repeats.

Example: With accesses (in terms of cache line numbers) of: 0x10, 0x12, 0x13, 0x15,
0x16, the deltas are: 2, 1, 2, 1. The prefetcher will detect this repeating pattern of 2,
1 and prefetch 0x18, 0x19, etc.

2. Miss Delta Inspection Logic: Inspects the deltas in the L2 misses in the recent past
(if the buffer contains any) in a 64KB region around the latest access. If it can find
a repeatable pattern in them, it prefetches the next few addresses.

3. Spatially-Ordered Delta Inspection Logic: Inspects the deltas of accesses in a region
close to the latest access and orders them with respect to address space (as opposed
to time, which is the default order). It then tries to issue prefetches if there is a
repeatable pattern within these deltas and issues.

Example: With accesses (in terms of cache line numbers) of: 0x11, 0x9, 0x10, 0x12,
the sorted deltas are in fact (from 0x9) 1, 1, 1. The prefetcher will detect this unit
stride and will prefetch 0x13, 0x14, etc.

Note: This logic also detects patterns with negative deltas in them, i.e., it looks at
recent accesses that are (in terms of access address) both less than and greater than
the current access to determine if there is a repeatable pattern in the deltas.

4. Exponential-Stride Detection Logic: Inspects the deltas of accesses in a region close
to the latest access to see if a multiplicative increasing stride is found. If detected,
the next few addresses from this pattern are fetched.

Example: With accesses (in terms of cache line numbers) of: 0x10, 0x12, 0x16,
0x1E, the deltas are: 2, 4, 8. The prefetcher will detect an exponential stride and will
prefetch 0x2E, 0x4E, etc.

Note: We employ slightly inexact pattern detection for this use case. For example,
even though deltas (in terms of cache lines) of 6, 13, 26, 53 do not strictly follow an
exponentially increasing series, they will be detected as such by the prefetcher. This
inexact exponentially increasing stride is found in 429.mcf in SPEC2006.

5. Binary-Search Detection Logic: Inspects the deltas of the accesses in a region close
to the latest access to see if a binary search pattern is present.

8
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Example: With memory accesses with deltas (in terms of cache line numbers) of:
-512, 256, 128, etc. the program is probably doing a binary-search-like pattern. In
this particular case, a prefetch for cache line with deltas from the latest access of -64
and 64 can be made by the prefetcher.

Note: We did not implement this in the current prefetcher because of high logic
complexity and low returns in terms of performance (since this is a very specialized
pattern).

6. Noise-resistant Spatial Pattern Detection: Our regular brute-force pattern detection
algorithm recognizes repeating deltas over the last N accesses that are stored in the
history buffers. While this gives good performance at the cost of logic, the detection
algorithm can be generalized further to detect patterns in the presence of seemingly
random accesses that destroy the repeating pattern (“noise”). The source of such
noise could be instruction scheduling optimizations that change the order, or perhaps
branches into code that adds seemingly random memory accesses to an otherwise
repeatable delta pattern. The pattern detection algorithm shown in Algorithm 1 can
be generalized by taking the N recent accesses in a region, and then selecting M (M <
N) accesses from the N. The “regular” brute force algorithm can then be run on the
M entries. This is, of course, very costly since all possible M accesses (for all values
of M) have to be sent to the pattern detection logic. Therefore we did not implement
this and have left it as a future extension of our prefetcher.

Example: With memory accesses with deltas (in terms of cache line numbers) of: 4,
1, 6, 2, 2, 6, 1, etc. and accesses of: 0, 4, 5, 11, 13, 15, 21, 22, etc. if only certain
deltas are chosen (corresponding to the bold accesses), a pattern of 4, 7, 4, 7 emerges
with seemingly random addresses mixed in.

Note: Recently, Ishii et al proposed AMPM (Access Map Prefetching Mechanism)
in [3], which is a special case of the above pattern detection. They compute the delta
between the latest access and all previous accesses and then see if this single delta
repeats over and over. The above-described method is a generalization of their delta
pattern detector and is costly in terms of logic but detects longer-than-one repeating
delta sequences in the presence of random accesses.

In a single cycle, multiple prefetches may be generated (depending on how many memory
accesses are made per cycle, among other things). If these prefetches are issued indiscrim-
inately, precious resources such as bandwidth and MSHR entries could be oversubscribed.
To prevent multiple prefetches to the same cache line from generating redundant requests,
first, the GHB and LHBs are queried to make sure the prefetch about to be issued has not
been accessed by the program before. In addition, a fully-associative buffer is checked be-
fore issuing the request. This buffer is populated with the most recent prefetches that have
been made. Alternatively, the about-to-be-issued prefetch requests can be filtered against
a Bloom Filter populated with the most recent cache accesses as Dimitrov and Zhou do [4].

The DPC rules allowed probing the cache to see if a cache line was present. Our
submission actually probed the cache before sending in prefetches for filtering purposes
(prefetch candidates that were already in the cache were rejected). In Section 8 we show
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Table 1: Table listing the parameters of our prefetcher and the description of the said
parameters.

Parameter Description

n Number of entries in the GHB

l Number of LHBs

m Number of entries in each LHB

agg Number of “ahead” prefetches issued

ahd If the prefetch bit is set, do we issue only the aggth prefetch?

cpok Are prefetches filtered against the current cache contents?

fil Number of entries in the prefetch filter

other design points of our prefetcher, some of which do not probe the cache before issuing
prefetches.

5. DPC Submission Design Point

For our DPC submission design point, we chose [n=128, m=24, agg=4, ahd=0, cpok=1,
fil=64]. Our prefetch logic contained exact pattern matching for repeating delta patterns
and inexact pattern matching for exponentially increasing delta patterns. The prefetcher
also detected exact repeating spatial patterns. We did not implement binary-search or
noise-resistant pattern matching due to logic complexity. For our prefetcher filter, we chose
to use a 64-entry fully associative buffer that stored the most recent cache accesses. In
addition to the prefetch filter, only those prefetches were issued that were not present in
the cache. The DPC rules allowed probing the cache to see if an address was present or not
(by checking the return value of the GetPrefetchBit() function and comparing against -1).
This design point gives a 20% performance improvement on average as shown in Figure 3.
The L2 cache miss reduction of this prefetcher is shown in Figure 4 - on average 60% of L2
cache misses are reduced by our prefetcher.

6. Parameters and Storage

Our prefetcher design has several tunable parameters, some of which are shown in Table 15.
Our DPC submission consisted of a prefetcher at the design point: [n=128, m=24, l=32,
agg=8, ahd=8, cpok=1, fil=64]. The following paragraph explains how this design point
conforms to the DPC design rules in terms of budget cost.

The cost of GHB is 128 × 32 bits = 4096 bits. The cost of LHBs is 32 × (24+1) × 32
= 256000 bits6. In addition, there is a prefetch cache of 32 entries (32 × 32 bits = 1024
bits) to filter out redundant prefetches. Therefore, the total storage cost of the prefetcher is

5. Note: we have more tunable parameters than are shown here. For example, DPC submissions slightly
varied the limit on the max variable given in Algorithm 1 before it issues the prefetches

6. Our prefetcher just uses the cache line address and not the full address, so we use 32 - 6 = 28 bits for
addresses. 2 extra bits are used for storing the access type (i.e., L1 vs. L2), and storing whether or not
it was a hit.
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Table 2: Table listing the parameters that identify various design points and the perfor-
mance results of our prefetcher at those design points.

n l m agg ahd cpok fil Perf Cov Notes

128 24 32 4 0 1 64 20% 60% Original DPC
submission design
point

128 24 32 8 0 1 128 22% 62% Best performan-
ing under DPC
rules (temps not
counted)

128 24 32 8 0 0 128 8% 61% Not poking caches

128 24 32 8 1 0 128 17% 60% Using prefetch bit

128 24 32 8 1 0 128 16% 52% No LHBs

1024 24 128 8 0 1 128 19% 62% Large budget
without cache
poking

1024 24 128 7 0 1 128 19% 61% Large budget
without cache
poking

1024 24 128 6 0 1 128 19% 60% Large budget
without cache
poking

1024 24 128 5 0 1 128 18% 60% Large budget
without cache
poking

1024 24 128 4 0 1 128 17% 60% Large budget
without cache
poking

1024 + 25600 + 4096 = 30720 bits. This is under the 4KB storage limit with 2048 bits left
for temporary variables. With unlimited hardware complexity, all the temporary variables
in the prefetcher can be incorporated as stateless logic7.

There are three incarnations of the prefetcher that have been submitted. All three have
a GHB size of 128, a LHB size of 24 with 32 entries. The cost of GHB is 128*32 bits =
4096 bits. The difference between these submissions is the aggressiveness of the prefetchers.
Specifically, these prefetchers have different limits on the max variable given in Algorithm

7. We count temporary variables as variables that do not persist across cycles. These variables are created
on-the-fly in the software prefetching code, and are cleared every cycle. The storage cost calculation only
includes storage that persists across cycles. For example, our code requires a temporary sorted array of
a small region of the GHB. This can be done by using a hardware sorting network and feeding it into
the stride detector in a single cycle without storing it anywhere. Therefore its cost is not included in the
cost calculation.

11
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Table 3: Table detailing parameters of our simulated CPU.
Parameter Value Notes

Front End Perfect No fetch hazards

Window Size 128

Issue Width 4 No restriction other than true de-
pendencies

L1 Cache Latency 1

L2 Cache Latency 20

Memory Latency 200

L1 Cache Size 32 KB

L1 Cache Assoc. 32

L2 Cache Size 2MB / 2MB / 512KB Config 1 / 2 / 3

L2 Cache Assoc. 32

L2 Cache Bandwidth 1000 / 1 / 1 accesses per
cycle

Config 1 / 2 / 3

Memory Bandwidth 1000 / 0.1 / 0.1 accesses
per cycle

Config 1 / 2 / 3

1 before they issue the prefetches. The cost of LHBs is 32*(24+1)*32=25600 bits8. In
addition, there is a prefetch cache of 32 entries (32*32bits=1024 bits) to filter out redundant
prefetches. Therefore, the total storage cost of the prefetcher is 1024+25600+4096 bits =
30720 bits. This is under the 4KB storage limit not counting the temporary variables.
With unlimited hardware complexity, all the temporary variables in the prefetcher can be
incorporated as stateless logic9.

7. Simulation Methodology

For our simulations, we relied on a standard version of the prefetcher kit provided by
the organizing committee of DPC-1 [5]. This kit contained PIN [6] and CMP$im[7] for
generating and simulating traces. To generate instructional traces, 40 billion instructions
were skipped and a trace 100 million instructions long was obtained10. An out-of-order
model was used for the processor with a 128-instruction window. Table 3 details the other
parameters of the performance model of the processor.

8. Our prefetcher just uses the cache line address and not the full address, so we use 32-6=26 bits for
addresses. Two extra bits are used for storing the access type (i.e., L1 vs L2), and storing whether or
not it was a hit.

9. We count temporary variables as variables that do not persist across cycles. These variables are created
on-the-fly in the software prefetching code, and are cleared every cycle. The storage cost calculation only
includes storage that persists across cycles. For example, our code requires a temporary sorted array of
a small region of the GHB. This can be done by using a hardware sorting network and feeding it into
the stride detector in a single cycle without storing it anywhere. Therefore, its cost is not included in
the cost calculation.

10. 998.specrand, 999.specrand and 481.wrf did not have their first 40 billion instructions skipped because
they did not have enough instructions in the program
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Figure 3: Performance simulation results of our prefetcher at the DPC design point:
[n=128, m=24, l=32, agg=4, ahd=0, cpok=1]. The average of the three con-
figurations is 20% as shown by the white bar on the right.
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Figure 4: L2 cache miss reduction by using the prefetcher at the DPC design point: [n=128,
m=24, l=32, agg=4, ahd=0, cpok=1]. The L2 cache misses are reduced by more
than 60% on average.

7.1. Benchmarks Not Limited by the Memory Sub-system

In the SPEC2006 suite, there are a few benchmarks that are not limited by the memory
sub-system according to our initial study. Benchmarks such as 447.dealII and 453.povray are
examples that may be limited by the issue width or the number of floating point units on
the simulated machine (the front-end of the machine had perfect branch prediction). For
these benchmarks, it is desirable for the prefetcher to not interfere with the current cached
contents. Our prefetcher does not degrade the performance of these benchmarks.
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7.2. Streaming Benchmarks

Benchmarks like 470.lbm and 462.libquantum have streaming memory behavior. For such
applications, since the access patterns are so simple and predictable, our predictor makes
accurate predictions and reduces the last-level cache misses by a large percentage for con-
figuration 1. The reason for the high number of LLC misses in configurations 2 & 3 for
470.libquantum is that multiple requests to identical addresses take up multiple slots in the
L2 queue, which is a finite resource. This particular benchmark produces a lot of L2 misses
to the same address, causing the L2 queue to be full most of the time. Our prefetcher in
debug mode reported that most of its prefetch requests were being ignored by the simulator
due to the L2 queue being full.

7.3. Pointer-Chasing Benchmarks

429.mcf is an example of a pointer-chasing benchmark. In at least one of its phases, it
exhibits accesses whose deltas follow a geometric pattern. Our prefetcher can reduce a
large number of LLC misses by correctly predicting the future access addresses as explained
in the previous section.

7.4. Benchmarks Negatively Affected

One benchmark in the suite, 483.xalancbmk, was negatively affected by our prefetcher in
configuration 1 and 2. The performance was reduced by 10% and the LLC misses were
actually increased. This is because our prefetcher is too aggressive and often predicts
erroneous addresses. These can pollute the cache and eat up into the fetch bandwidth.
Given more storage and access to more microarchitecture modules like MSHRs, etc., we
believe that we can improve the performance of benchmarks like 483.xalancbmk.

8. Other Design Points

Using the same simulation framework, we ran other simulations to observe the performance
of our prefetcher at other design points. Table 2 summarizes the results at all the design
points and the following figures show perforamnce results at selected design points.

Figure 5 shows the performance results at the design point: [n=128, m=24, l=32,
agg=8, ahd=0, cpok=1]. Figure 6 shows the L2 miss reduction percentages. At this design
point, without counting temporary variables, the prefetcher would still be under 4KB of
state. This prefetcher also filers prefetch candidates against the cache contents as allowed
by the DPC rules.

Figure 7 shows the performance results at the design point: [n=128, m=0, l=0, agg=8,
ahd=1, cpok=0]. Figure 8 shows the L2 cache miss reduction percentages. This result
shows that much of the performance improvement over the baseline can be obtained by
using a GHB alone (without using LHBs). The LHBs, however, are required for obtaining
the last few performance improvement percentage points.

At the “large-budget” performance point, aggression of the prefetcher from 4 to 8 does
not vary the performance by that much as shown by the final few entries of 2.
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Figure 5: Performance simulation results of another design point with [n=128, m=24, l=32,
agg=8, ahd=0, cpok=1]. The average of the three configurations is 22%, as shown
by the white bar on the right.
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Figure 6: L2 cache miss reduction by using the prefetcher with design point: [n=128, m=24,
l=32, agg=8, ahd=0, cpok=1].

9. Hardware Realization

Although in its present form, the logic and control part of this prefetcher can be costly
to implement as-is in hardware, there could be a few changes to the prefetcher that could
make it practical. These changes are beyond the scope of this paper, which only seeks
to implement the best performing prefetching algorithm with a fixed budget size (thereby
ignoring all hardware complexity). During the design of this prefetcher we came up with a
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Figure 7: Performance simulation results of another design point with [n=128, m=0, l=0,
agg=8, ahd=1, cpok=0]. The average of the three configurations is 16% as shown
by the white bar on the right.

-20

0

20

40

60

80

100

120

4
0
0
.p
er
lb
en
ch

4
0
1
.b
zi
p
2

4
0
3
.g
cc

4
2
9
.m
cf

4
4
5
.g
o
b
m
k

4
5
6
.h
m
m
er

4
5
8
.s
je
n
g

4
6
2
.l
ib
q
u
an
tu
m

4
6
4
.h
2
6
4
re
f

4
7
1
.o
m
n
et
p
p

4
7
3
.a
st
ar

4
8
3
.x
al
an
cb
m
k

9
9
9
.s
p
ec
ra
n
d

4
1
0
.b
w
av
es

4
1
6
.g
am
es
s

4
3
3
.m
il
c

4
3
4
.z
eu
sm
p

4
3
5
.g
ro
m
ac
s

4
3
6
.c
ac
tu
sA
D
M

4
3
7
.l
es
li
e3
d

4
4
4
.n
am
d

4
4
7
.d
ea
lI
I

4
5
0
.s
o
p
le
x

4
5
3
.p
o
v
ra
y

4
5
4
.c
al
cu
li
x

4
5
9
.G
em
sF
D
T
D

4
6
5
.t
o
n
to

4
7
0
.l
b
m

4
8
1
.w
rf

4
8
2
.s
p
h
in
x
3

9
9
8
.s
p
ec
ra
n
d

G
eo
m
ea
n

L
2

 M
is

s
 R

e
d

u
c
ti

o
n

Config1

Config2

Config3

AMEAN

Figure 8: L2 cache miss reduction by using the prefetcher with design point: [n=128, m=0,
l=0, agg=8, ahd=1, cpok=0]. THe L2 cache misses are reduced by 44% on
average.

few ideas for making the prefetcher more hardware-friendly, but all those schemes took up
more storage than what our proposed prefetcher currently uses.

10. Future Work

An exhaustive study of the design space for this prefetcher would be an interesting future
study. In our paper we have mentioned two other methods for detecting patterns that
could be used in future work as well. The binary search pattern could be useful for a few
workloads while the noise-resistant repeating delta detector would be useful for branch-
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intensive workloads. Researchers could also try to come up with schemes to efficiently map
the logic we propose for our prefetcher into realizable hardware. Another unexplored aspect
of this prefetcher would be adding some sort of adaptive control to the aggression of the
prefetcher. This might help in benchmarks that are negatively affected by the prefetcher.

11. Conclusion

In this paper, we presented a prefetcher that can significantly reduce the number of last-
level cache misses (over 60% on average for SPEC2006) by exploiting and understanding
a variety of memory access patterns. It can effectively improve the performance of SPEC
suite by about 20% on average using 4KB of bit-budget.
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