
Journal of Instruction-Level Parallelism 13 (2011) 1-15 Submitted 3/10; published 1/11

Enhancements for Accurate and Timely Streaming Prefetcher

Gang Liu GALIU@CISE.UFL.EDU

Zhuo Huang ZHUANG@CISE.UFL.EDU

Jih-Kwon Peir PEIR@CISE.UFL.EDU

Department of Computer & Information Science & Engineering

University of Florida

Gainesville, FL 32611 USA

Xudong Shi XDSHI@GOOGLE.COM

Google, Inc

1600 Amphitheater Pkwy

Mountain View, CA 94043 USA

Lu Peng LPENG@LSU.EDU

Department of Electrical & Computer Engineering

Louisiana State University

Baton Rouge, LA 70803 USA

Abstract

In this paper, we describe several enhancement techniques to improve the state-of-the-art

stream prefetcher. First, the enhanced stream prefetcher takes streams with long stride into

consideration to avoid wasteful prefetches. Second, accessing a node in a tree or graph structure

may have a different direction than the traversal direction through the structure. The enhanced
stream prefetcher eliminates this type of noise for establishing the stream. Third, regular streams

for array accesses are often repeated. Initiating penalty can be avoided by early re-establishing a

repeated stream. Fourth, an established stream may be dead before being removed from the stream

prefetching table. A dead stream removal scheme reduces inaccurate prefetches. Performance

evaluations based on SPEC applications show that the enhanced stream prefetcher improves 38%,

42%, and 55% of CPI for the three tested cache configurations provided by the 1st JILP Data

Prefetching Championship Committee [19] with respect to the base design without prefetching. In

comparison with the original stream prefetcher, the improvements are 2%, 18%, and 19%

respectively.

1. Introduction

With fast advances in processor technology, the speed gap has been continuously widening
between processors and main memory. It usually takes hundreds of processor cycles to access the

off-die memory. Caches play a critical role in bridging this performance gap by retaining the

recent accessed instructions and data for fast accesses. Recently, many advanced caching
mechanisms have been proposed for on-die CMP caches [1, 2, 3, 4]. However, due to limited

cache capacity, the required working set of applications may not fit into the cache and causes

frequent accesses to memory.

LIU, HUANG, PEIR, SHI, AND PENG

2

Prefetching is an important mechanism to reduce memory access penalty. Existing data

prefetching methods are based on two general behaviors of the missing block addresses:
regularity and correlation. Existing sequential [5], stride [6, 7], distance [8, 9, 10] and regular

stream [11, 12] prefetchers dynamically capture the regularity of a sequence of missing block

addresses to speculatively prefetch subsequent blocks. Correlation-based prefetchers, such as

correlated [13], Markov [14], hot-stream [15], temporal streaming [16], spatial-streaming [17]
and a combination of temporal/spatial streaming [18] prefetchers, on the other hand, record the

history of nearby missing addresses to trigger prefetches assuming such miss correlations will be

repeated. This approach, however, incurs a significant space overhead for the miss history.

Among the regularity-based prefetchers, the stream prefetcher captures a sequence of nearby

misses when their addresses follow the same positive or negative direction in a small memory
region. Once a stream is identified, a demand miss targeting the current active stream triggers

prefetches of consecutive blocks in the detected direction. Two key parameters: prefetch distance

and degree control the aggressiveness of stream prefetching. The prefetch distance defines the
stream monitor region and how far ahead to trigger the prefetch. The prefetch degree defines the

number of consecutive blocks to be prefetched. Due to its simplicity and effectiveness, the stream

prefetcher has been implemented in commercial processors [11, 12].

In this paper, we evaluate several enhancement techniques for optimizing a stream prefetcher.

First, the stream prefetcher is augmented with a stride distance. Upon detecting memory accesses
with a constant stride (measured in bytes) of longer than one block, the stream prefetcher

prefetches blocks according to the detected stride. Second, we observe that in a few applications,

accessing a data structure through pointers such as trees and graphs, each node in the data
structure may occupy more than one block. Hence, accesses within a node may have a different

addressing direction than the traversal direction through the nodes. When such a case is detected,

we allow a stream to be formed by ignoring the noise, i.e. an adjacent block access in the opposite

direction. Third, we observed that regular streams for array accesses are often repeated. To reduce
the penalty of re-initiating a stream, we allow a previous repeated stream to launch again after the

old stream is caught up by a new stream. Fourth, a short stream may be dead before being

replaced from the stream table. Subsequent hits to a dead stream initiates inaccurate prefetching
without going through the needed training stage. Detecting and removing aging short streams

from the stream table leads to more accurate prefetching.

Performance evaluations based on a set of SPEC2000 and SPEC2006 benchmarks show that

the enhanced stream prefetcher makes significant improvement over the original stream

prefetcher. For the three L2 cache configurations listed in Table 1, the enhanced stream prefetcher
improves 38%, 42%, and 55% of their Cycle-Per-Instructions (CPIs) with respect to the base

design without prefetching. In comparison with the original stream prefetcher, the improvements

are 2%, 18%, and 19% respectively.

The remainder of this paper is organized as follows. Section 2 provides the basic design of

stream prefetcher. Section 3 describes the benefit of constant stride, stream repetition, as well as

the challenge in handling stream noise and dead stream removal. Section 4 describes the details of

the enhancement techniques. Section 5 provides the evaluation methodology and Section 6

presents the evaluation results. Related work is given in Section 7 followed by a brief conclusion

in Section 8.

ENHANCEMENTS FOR ACCURATE AND TIMELY STREAMING PREFETCHER

3

2. Stream Prefetcher Basics

Figure 1: Basic design of a Stream Prefetcher.

The stream prefetcher we model is based on the one presented in [11] which is originated from

the IBM POWER4 processor [12]. The stream prefetcher uses a stream table to keep track of
multiple access streams. All established streams (also referred as trained streams) in the stream

table are monitored against the cache misses. When an incoming memory request falls into the

current monitor window of a trained stream, the stream prefetcher prefetches consecutive blocks

according to the direction of the trained stream.

A demand missing block address enters the stream table in an untrained state if the missing

block has not been recorded. An untrained stream becomes trained based on the following
conditions. First, the next two consecutive misses located in the same memory region as an

untrained miss are examined. In the design reported in [11], the memory region covers 16 blocks

before and after the original missing block. Second, these three consecutive misses are in the
same ascending or descending direction starting from the original miss.

The aggressiveness of a stream prefetcher is controlled by the distance and the degree of the
stream as illustrated in Figure 1. The original miss address and the current stream window defined

by the start and the end block address of each trained stream are recorded in the stream table. The

number of blocks from the start to the end blocks determines the prefetch distance, which
indicates the stream monitor region as well as controls how far ahead of the demand access

stream that the prefetcher can prefetch. The prefetch degree, on the other hand, controls the

number of consecutive blocks for each stream prefetcher. When a new memory request falls into
the current monitored region of a trained stream, the stream prefetcher prefetches the next n

consecutive blocks starting from the end of the monitored region, where n is the prefetch degree.

Afterwards, the monitored start and end address are advanced by n blocks to keep the stream

moving along the stream direction.

LIU, HUANG, PEIR, SHI, AND PENG

4

3. Stream Enhancement Techniques

3.1. Constant Stride Optimization

Figure 2: Code segment from scanner.c in SPEC2000 Benchmark art.

The first enhancement is to integrate long-stride prefetching into the stream prefetcher. In the
original stream prefetcher, streams are prefetched by consecutive blocks. In real applications, it is

not uncommon that memory accesses are followed a constant stride across multiple blocks.

Although such long-stride accessing patterns can be captured by a stream prefetcher, stream
prefetching of consecutive blocks wastes memory bandwidth and pollutes the caches. For

example, in examining scanner.c in art from SPEC2000 Benchmark (Figure 2), we can identify a

constant-stride access pattern across multiple blocks. Note that the memory references in this
routine causes 80% of all misses in art on the baseline 1MB L2 cache without prefetching. As

shown in the memory allocation part, the size of each element of the two arrays bus and tds is 88

bytes. Each element of two arrays are allocated one-by-one in a round-robin fashion. Therefore,

two adjacent elements in bus are 192 bytes apart after padding the arrays with 16 bytes. Given a
cache line size of 64 bytes, consecutive accesses to array bus span across 3 blocks since

&bus[i+1][j] - &bus[i][j] = 192 bytes. As a result, 2 out of 3 prefetched blocks are wasted by the

original stream prefetcher.

In the enhanced stream prefetcher, a straight-forward solution dynamically detects the stride

distance information. If a constant stride is detected, instead of prefetching consecutive blocks,
the constant stride is used to calculate the correct blocks to avoid extra prefetches. More design

details will be given in the next section.

3.2. Noise Removal

In training a stream in a stream prefetcher [11, 12], three consecutive misses addressing in a small

memory region are examined. These three misses must follow the same ascending or descending

direction to successfully train the stream. When a training stream fails, it is likely that two

Memory Allocation:

 for (i=0;i<numf1s;i++) {

 //numf1s = 10000,numf2s = 11

 bus[i] = (double *)malloc(numf2s*sizeof(double));

 tds[i] = (double *)malloc(numf2s*sizeof(double));

 }

Memory Access:

 for (tj=0;tj<numf2s;tj++) {

 …

 for (ti=0;ti<numf1s;ti++)

 Y[tj].y += f1_layer[ti].P * bus[ti][tj];

 }

ENHANCEMENTS FOR ACCURATE AND TIMELY STREAMING PREFETCHER

5

consecutive misses are addressing memory blocks from the opposite directions with respect to the

first miss. After examining the unsuccessfully trained streams in soplex, it is interesting to see
that out of 11484 unsuccessfully trained streams, 7343 are due to an access to the next adjacent

block in the positive direction (i.e. a positive distance of one block). We traced the memory

reference pattern of soplex, and found it behaves as illustrated in Figure 3. Although the overall

direction of the stream is descending, the positive one-block jumps keep preventing the stream
from being trained.

To remedy this problem, we allow a training stream to stay untrained when the subsequent

miss occurs in the opposite direction from the current miss and one of the misses in the opposite

direction is accessing the adjacent block. In other words, the adjacent block access is considered

as noise and is ignored in training the stream as illustrated in Figure 3.

Figure 3: An abstract example of stream training with noise removal.

3.3. Early Launch of Repeat Stream

Besides the constant stride accesses in scanner.c (Figure 2), we also observe that a stream access
is often repeated. In the nested loop of the example, the streaming array bus is accessed

repeatedly 11 times with exactly the same start and end addresses. In addition, the repetition of

the streaming accesses is separated only by a few instructions. It is beneficial to initiate the
stream prefetching again from the recorded original stream address when the current stream is

coming to an end. By keeping previous long streams in the stream table, we can detect repeated

streams once two streams overlap in the monitored region. Early launching a repeated stream can

reduce the penalty of initiating a new stream prefetching.

3.4. Dead Steam Removal

Given the relatively loose condition in training a stream as described in Section 2, many streams
can be established even if they are not an accurate stream for prefetching. Furthermore, we also

observe that for many short streams that remain inactive for a long period of time, the stream

likely has come to an end. These dead streams may still stay in the stream table and can
accidentally catch an incoming memory access to trigger prefetches. These incorrect prefetches

pollute the cache and waste memory bandwidth.

The number of dead streams in the stream table goes up with the table size. Simulation results

show that with a 128-entry stream table, roughly 88% and 62% of the trained streams have stayed

in the table longer than 100K cycles without triggering any prefetches respectively for art and
ammp. When a prefetched block is triggered by an old stream that has not triggered any prefetch

over 100K cycles, it is useless 92% of the time.

LIU, HUANG, PEIR, SHI, AND PENG

6

Figure 4: Flowchart of enhanced stream training and prefetching.

Although a smaller stream table can naturally replace streams before they die, smaller tables

may suffer insufficient space to keep all the active streams. Hence, by removing dead streams

dynamically based on their ages in a reasonable-size stream table, the active streams can likely be

maintained without holding many dead streams and causing incorrect prefetches.

4. Enhanced Stream Prefetcher Design

In this section, we describe the detailed designs and operations of integrating the four

enhancement techniques into the original stream prefetcher. The same two steps: training and

prefetching are performed in the enhanced stream prefetcher. In the training stage, the noise

ENHANCEMENTS FOR ACCURATE AND TIMELY STREAMING PREFETCHER

7

removal technique is integrated to screen accesses with the noise behavior as shown in Figure 3.

In the prefetching stage, correct memory blocks with constant-stride accesses are detected and
prefetched. In addition, repeated streams are captured and triggered earlier when the current

stream catches up an existing stream in the stream table. Furthermore, dead streams are removed

from the stream table based on the stream age.

Error! Reference source not found. shows the flowchart of the enhanced stream

prefetching. The basic designs and data structures are given in the following subsections. Note
that for simplicity, we use separate training and streaming tables in the respective stages. They

can be combined into a unified table.

4.1. Stream Training

Noise Flag

1 bit

Direction

1 bit

3
rd
Miss

5 bits

2
nd
Miss

5 bits

1
st
Miss

26 bits

Figure 5: Training table entry.

Each entry in training table is depicted in Figure 5. Three consecutive misses in a small training

window need to be captured for stream training. All the misses are represented by cache block
addresses, with 26 bits for cache block address of the 1

st
 miss, and 5 bits representing a distance

of +/- 16 blocks from the 1
st
 miss to the 2

nd
 miss or the 3

rd
 miss. Hence the training window of

each stream has 32 blocks. Direction is an indicator of an ascending or descending stream. The
Noise Flag marks the activation of the noise removal in training. The training stage follows

several steps.

1. When a cache miss occurs, both the training and the stream tables are searched. If the miss

falls into the monitored region of a trained stream, the miss will not be trained again.

2. If the miss block does not fall into any training window (i.e. within positive and negative 16

blocks of the recorded miss) in the training table, a new entry is created to record the new

miss for training and the LRU entry is replaced.

3. If the miss is within a training window of a recorded miss, three actions are followed.

a. Record the block distance from the 1
st
 miss in case the miss is the 2

nd
 miss of the

training stream.

b. If the 3
rd

 miss is detected and all three misses are following the same direction, the

stream is trained and is moved to the stream table for prefetching.

c. If the three misses are not in the same direction, there are two conditions.

i. If an access to the adjacent block is detected which is in the opposite

direction of the stream training, such an access is treated as a noise and
removed.

ii. If the three misses do not satisfy the noise removal condition, the 2
nd

 miss
and the 3

rd
 miss replace the 1

st
 miss and the 2

nd
 miss in the corresponding

training stream for continuing the training.

LIU, HUANG, PEIR, SHI, AND PENG

8

4.2. Stream Prefetching

Figure 6: Stream table entry.

After a stream is successfully trained, the stream is moved from training table to stream table. The

information recorded in each stream table entry is given in Figure 6. Orig Addr is the cache block

address of the 1
st
 miss from the training table. Start Addr and End Addr form the monitored

region, with 32-bit full address for End Addr, and 9 bits of block distance from Start Addr to End

Addr. Last Addr records the actual last memory access in form of byte distance from End Addr

for the purpose of detecting constant stride accesses. Direction is the indicator of an ascending or

descending stream. Stride records the last stride distance in bytes. StrEn flag enables stride
prefetching based on the detected stride distance. Repeat flag is used to mark a repeated stream.

Finally, TimeStamp stores the age in CPU cycles of the last stream prefetching triggered by the

recorded stream. The enhanced stream prefetching follows several steps.

1. When a memory access falls into the monitored region of a trained stream, stream prefetching

of subsequent n blocks is triggered where n is the prefetch degree. The prefetching starts from
the block following the End_Addr according to the stream direction for n consecutive blocks.

2. A stream with constant-stride over the length of one block can be detected dynamically and

used for accurate stride prefetching. When a memory access occurs in the monitored region of

a trained stream, the memory address is saved in Last Addr, and the access stride in byte

granularity is recalculated. In case the new Stride matches the previous Stride, the StrEn flag is
turned on and the subsequent prefetches will be based on the recorded Stride. Note that

whenever a new Stride mismatches the recorded Stride, the StrEn flag is turned off and the

prefetcher is reset to the stream prefetching of consecutive blocks.

3. The detection and early prefetching of repeated streams work as follows. When the forwarded

monitored region of an active stream overlaps with the monitored region of another inactive
stream in the stream table, a repeated stream is discovered under two conditions. First, the two

streams have their starting addresses closely to each other, i.e., the two streams start from

nearby addresses. Second, both streams are long streams which cover more than 256 blocks.
Upon discovery of such a repeated stream, prefetching of the inactive stream is triggered from

its original address.

4. The age of an existing stream is used to identify and remove potential dead streams from the

stream table, where the age is measured from the last time when a stream prefetching is

triggered. A global TimeStamp is used to calculate the stream age. The current TimeStamp is
saved into the stream table whenever a memory access occurs to a stream. The age of all the

streams in the stream table are checked periodically. The potential dead stream is identified

and removed when the stream has been idled for a long period time (> 10K cycles) and the

stream is a short stream covering less than 256 blocks.

ENHANCEMENTS FOR ACCURATE AND TIMELY STREAMING PREFETCHER

9

5. Evaluation Methodology

To demonstrate the advantages of the enhanced stream prefetcher, we selected twelve

benchmarks with high L2 Misses-Per-Kilo-Instructions (MPKI) from SPEC2000 and SPEC2006.
Trace-driven simulations were carried out using the CMPsim tool set provided by the 1

st
 JILP

Data Prefetching Championship competition committee [19]. The traces were collected from each

benchmark by fast-forwarding 40 billion instructions, and then collected traces for the next 100

million instructions.

Table 1: Simulator Configuration.

Issue width 4

Instruction Window 128 entries

L1 cache 32KB, 8-way,I/D caches, 1 cycle

L2 cache 512KB/2MB, 16-way, 20 cycles

Memory latency 200 cycles

Configuration 1 (c1) 2MB L2, 1000 requests/cycle

Configuration 2 (c2) 2MB L2, 1 request/10 cycles

Configuration 3 (c3) 512KB L2, 1000 requests/cycle

Table 2: Prefetcher Configurations.

Prefetcher Table configuration Size

GHB-distance 256 IT entries, 256 GHB entries 4KB

Stream 16 combined entries 128B

Enhanced-Stream 8 training entries, 8 stream entries 256B

The simulation framework models an out-of-order core with the basic parameters as outlined

in Table 1. Two L2 cache sizes and two memory bandwidths are considered resulting in three L2

cache configurations.

We evaluate and compare three prefetch schemes, including the PC-based Distance

prefetcher using a Global History Buffer (GHB-Distance) [9], the original Stream prefetcher
(Stream) [11] and the Enhanced Stream prefetcher (Enhanced-Stream). All prefetchers prefetch

memory blocks directly into the L2 cache. The simulated table sizes for the three prefetchers are

given in Table 2. Both the prefetch width and depth for GHB-distance are 16 and the prefetch
degree and distance are 4 and 64, respectively, for both stream-based prefetchers. Under the

allowed space budget, we simulate multiple table sizes for maintaining the stream history and

selected the size that demonstrates the highest performance for both stream-based prefetchers. For

achieving the best performance, the results show that both stream prefetchers require very little
history information.

LIU, HUANG, PEIR, SHI, AND PENG

10

6. Experimental Results

6.1. Performance of Enhanced-Stream Prefetcher

Figure 7 shows the normalized CPI comparison of the three prefetching schemes where the CPIs

are normalized to the baseline design without any prefetching. In this figure, the twelve selected

benchmarks are sorted from left to right in the descending order of the MPKI. We can make

several important observations. First, on the arithmetic average of all workloads, the performance
improvements over the base CPI are 27%, 37%, and 38% for GHB-Distance, Stream, and

Enhanced-Stream prefetchers for the c1 configuration, 16%, 29%, and 42% for the c2

configuration, and 26%, 44%, and 55% for the c3 configuration, respectively. Overall, Enhanced-

Stream outperforms GHB-Distance and Stream respectively by about 30% and 14%.

Figure 7: CPI comparisons for the three prefetching schemes.

Second, among the four enhancement techniques, stride prefetching gains the most benefit.

For art and mcf, the performance gains from stride prefetching are about 45% and 28%,

respectively, revealing that stream prefetching of consecutive blocks is wasteful and inaccurate in
these applications.

Third, different benchmarks show very different results with respect to the three prefetching

schemes. Enhanced-Stream is most effective for art and mcf which have the highest MPKI and

most beneficial from stride prefetching. Early prefetching of repeated stream works well for art

with about 6% improvement on 512KB L2 cache. The noise removal scheme shows some
impacts on soplex for a minor performance gain about 1%. The dead stream removal scheme is

very effective in many applications when large stream tables are used. We will show the

sensitivity study results in Section 6.2.

Fouth, GHB-Distance performs worse than the other two schemes for most applications.
However, it shows slight edge over stream-based prefetchers on ammp and omnetpp. This is due

to the long and constant distances are covered in the GHB-Distance prefetcher.

Finally, we also observe that integrations of multiple enhancement techniques may cause

performance interferences among one another. The results in Figure 7 are simulated with the

combination of all four enhancement techniques.

ENHANCEMENTS FOR ACCURATE AND TIMELY STREAMING PREFETCHER

11

6.2. Sensitivity Study

The sizes of the training table and the stream table impact the overall prefetch performance. In

Figure 8, we collect the average CPI simulated with the three cache configurations listed in Table

1, and compare different combinations of various table sizes in Enhanced-Stream. For the stream

table, we simulate six table sizes with 4, 8, 16, 32, 64, and 128 entries. For each stream table size,
we simulate three associated training table sizes with the number of entries equal to the same,

double, and quadruple of the stream table size.

The results are plotted in Figure 8, where the notation n / m1, m2, m3 represents the size of

the stream table (n) and three associated training table sizes (m1, m2, m3). It is interesting to

observe that the stream table of 8 entries has the lowest overall CPI indicating the number of
active streams is very small in all applications. Increasing the stream table size beyond 8 degrades

the performance. This is due to the fact that many inactive streams are kept in the stream table

and cause inaccurate prefetching. When the number of the stream table entries reduce to 4, the
insufficient space to hold all active streams reduce the overall improvement. We can also observe

that the performance improvement is rather insensitive to the training table size.

Figure 8: Sensitivity on stream history table sizes. (Notation: size = stream table size / three

training table sizes).

We also evaluate the effectiveness of dead stream removal with different stream table sizes as

shown in Figure 9. The left figure shows the average performance with the three cache

configurations for all the workloads, with three dead stream removal techniques: no removal,
removal streams with the age of 100K cycles, and removal streams with the age of 10K cycles.

As can be observed, when stream table size is larger than 8, dead stream removal is effective in

reducing the damage of inaccurate dead-stream prefetching. However, when the stream table size

reduces to 8 or smaller, dead stream removal has very little impact. This is due to the fact that
small table sizes can naturally replace dead streams dynamically.

Optimal stream table size is not always the same for individual workloads. The right figure in

Figure 9 demonstrates that optimal stream table size varies from 4 to 64 for individual workloads.

For example, with 16 stream entries, swim can improve 5% over 8 stream entries. Hence in

practice, it would be a better choice to have a relatively large stream table integrated with an
effective dead stream removal scheme.

LIU, HUANG, PEIR, SHI, AND PENG

12

Figure 9: Overall (left figure) and individual (right figure) performance for Dead Stream
Removal. ES-DSR-NA is without Dead Stream Removal, ES-DSR-100k/10k are with

Dead Stream Removal and dead streams are defined as having been inactive for more

than 100k/10k CPU cycles.

7. Related Work

There have been many software and hardware based prefetching methods to alleviate

performance penalties on cache misses [20, 21, 22, 23, 24]. Traditional hardware-oriented

sequential [4], stride [5, 6], distance [7, 8, 9], and stream [1, 10] based prefetchers work well for

applications with regular cache miss patterns. These prefetchers dynamically capture the
regularity of a sequence of missing block addresses to speculatively prefetch the subsequent

blocks. Among them, the stream prefetcher [11, 12] has been adapted in commercial processors

due to its simplicity and effectiveness. Stream prefetchers prefetch consecutive blocks according
to the streaming access direction when consecutive misses within a small memory region follow

the same direction. The prefetching stream continues as long as subsequent memory requests fall

in the monitored region of the active streams.

However, in many modern applications and runtime environments, dynamic memory

allocations and Linked Data Structures (LDS) are very common. It is difficult to accurately
prefetch the LDS due to their irregular address patterns. Miss-correlation prefetchers [13, 14]

record patterns of miss addresses and use the past miss correlations to predict future cache misses.

To be effective, these approaches require a huge history table to record the past miss correlations.
The Global History Buffer [8, 9] proposes a general FIFO structure for recording and identifying

nearby missing address patterns. It can be used to implement both stride/distance based

prefetchers as well as the correlation-based prefetchers. To reduce the space overhead, Tag-

Correlating prefetcher extends the miss correlation to much bigger blocks [25]. Coterminous
Group prefetcher [26] records and prefetches only the nearby missing blocks with equal reuse

distance.

ENHANCEMENTS FOR ACCURATE AND TIMELY STREAMING PREFETCHER

13

8. Conclusion

In this paper, we report enhancement techniques to improve the stream prefetcher. Based on the

simulation model and workloads provided by the prefetch competition committee [19], our
evaluation results show that the enhanced stream prefetcher improves 38%, 42%, and 55% of CPI

for the three cache configurations listed in Table 1 with respect to the base design without

prefetching. In comparison with the original stream prefetcher, the improvements are 2%, 18%,

and 19% respectively. We also show that the space overhead of implementing an enhanced
stream prefetcher is very small.

Acknowledgements

This work is supported in part by a research donation from Intel Corp. and by the National

Science Foundation under CRI collaborative awards 0751112, 0750847, 0750851, 0750852,
0750860, 0750868, 0750884, and 0751091. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the authors and do not necessarily reflect

the views of Intel Corp. and the NSF.

References

[1] N. Megiddo and D. S. Modha, "Outperforming LRU with an adaptive replacement cache

algorithm," Computer, vol. 37, pp. 58-65, August 2004.

[2] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr, and J. Emer, "Adaptive insertion

policies for high performance caching," in Proceedings of 34th International Symposium on
Computer Architecture, pp. 381-391, June 2007.

[3] M. K. Qureshi and Y. N. Patt, "Utility-based cache partitioning: A low-overhead, high-

performance, runtime mechanism to partition shared caches," in Proceedings of 39th
International Symposium on Microarchitecture, pp. 423-432, December 2006.

[4] K. Rajan and R. Govindarajan, "Emulating optimal replacement with a shepherd cache," in

Proceedings of 40th International Symposium on Microarchitecture, pp. 445-454,
December 2007.

[5] N. P. Jouppi, "Improving direct-mapped cache performance by the addition of a small fully-

associative cache and prefetch buffers," in Proceedings of 17th International Symposium on

Computer Architecture, pp. 364-373, May 1990.

[6] T.-F. Chen and J.-L. Baer, "Reducing memory latency via non-blocking and prefetching

caches," in Proceedings of 5th International Conference on Architectural Support

Programming Languages and Operating Systems, pp. 51-61, October 1992.

[7] J. W. C. Fu, J. H. Patel, and B. L. Janssens, "Stride directed prefetching in scalar

processors," in Proceedings of 25th International Symposium on Microarchitecture, pp.

102-110, December 1992.

LIU, HUANG, PEIR, SHI, AND PENG

14

[8] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith, "AC/DC: an adaptive data cache prefetcher,"

in Proceedings of 13th International Conference on Parallel Architecture and Compilation
Techniques, pp. 135-145, October 2004.

[9] K. J. Nesbit and J. E. Smith, "Data cache prefetching using a global history buffer," in

Proceedings of 10th International Symposium on High Performance Computer

Architecture, pp. 96-105, Febrary 2004.

[10] G. B. Kandiraju and A. Sivasubramaniam, "Going the distance for TLB prefetching: An

application-driven study," in Proceedings of 29th International Symposium on Computer

Architecture, pp. 195-206, May 2002.

[11] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, "Feedback directed prefetching: Improving

the performance and bandwidth-efficiency of hardware prefetchers," in Proceedings of 13th

International Symposium on High Performance Computer Architecture, pp. 63-74, Febrary
2007.

[12] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy, "POWER4 system

microarchitecture," IBM Technical White Paper, Oct 2001.

[13] M. Charney and A. Reeves, "Generalized correlation-based hardware prefetching,"
Technical Report No. EE-CEG-95-1, Cornell University, February 1995.

[14] D. Joseph and D. Grunwald, "Prefetching using Markov predictors," in Proceedings of 24th

International Symposium on Computer Architecture, pp. 252-263, June 1997.

[15] T. M. Chilimbi and M. Hirzel, "Dynamic hot data stream prefetching for general-purpose

programs," in Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation, pp. 199-209, June 2002.

[16] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and B. Falsafi, "Temporal

streaming of shared memory," in Proceedings of 32nd Interntional Symposium on

Computer Architecture, pp. 222-233, June 2005.

[17] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, "Spatial memory
streaming," in Proceedings of 33rd International Symposium on Computer Architecture, pp.

252-263, June 2006.

[18] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, "Spatio-temporal memory
streaming," in Proceedings of 36th International Symposium on Computer Architecture, pp.

69-80, June 2009.

[19] The 1st JILP Data Prefetching Championship (DPC-1). Available: http://www.jilp.org/dpc/

[20] C.-K. Luk and T. C. Mowry, "Compiler-based prefetching for recursive data structures," in
Proceedings of 7th International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 222-233, December 1996.

[21] B. Cahoon and K. S. McKinley, "Data flow analysis for software prefetching linked data
structures in Java," in Proceedings of Internatinal Conference on Parallel Architectures and

Compilation Techniques, pp. 280-291, September 2001.

[22] S. P. Vanderwiel and D. J. Lilja, "Data Prefetch Mechanisms," ACM Computing Surveys,
vol. 32, pp. 174-199, June 2000.

ENHANCEMENTS FOR ACCURATE AND TIMELY STREAMING PREFETCHER

15

[23] T. C. Mowry, M. S. Lam, and A. Gupta, "Design and evaluation of a compiler algorithm for

prefetching," in Proceedings of the 5th International Conference on Architectural Support
Programming Languages and Operating Systems, pp. 62-73, October 1992.

[24] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and C. C. Weems, "Guided region

prefetching: a cooperative hardware/software approach," in Proceedings of 30th

International Symposium on Computer Architecture, pp. 388-398, June 2003.

[25] Z. Hu, M. Martonosi, and S. Kaxiras, "TCP: tag correlating prefetchers," in Proceedings of

9th International Symposium on High Performance Computer Architecture, pp. 317-326,

February 2003.

[26] X. Shi, Z. Yang, J.-K. Peir, L. Peng, Y.-K. Chen, V. Lee, and B. Liang, "Coterminous

locality and coterminous group data prefetching on chip-multiprocessors," in Proceedings

of 20th International Parallel and Distributed Processing Symposium, pp. 69, April 2006.

