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Abstract

Hardware data prefetching is widely adopted to hide long memory latency. A hardware
data prefetcher predicts the memory address that will be accessed in the near future and
fetches the data at the predicted address into the cache memory in advance. To detect
memory access patterns such as a constant stride, most existing prefetchers use differences
between addresses in a sequence of memory accesses. However, prefetching based on the
differences often fail to detect memory access patterns when aggressive optimizations are
applied. For example, out-of-order execution changes the memory access order. It causes
inaccurate prediction because the sequence of memory addresses used to calculate the
difference are changed by the optimization.

To overcome the problems of existing prefetchers, we propose Access Map Pattern
Matching (AMPM). The AMPM prefetcher has two key components: a memory access
map and hardware pattern matching logic. The memory access map is a bitmap-like data
structure for holding past memory accesses. The AMPM prefetcher divides the memory
address space into memory regions of a fixed size. The memory access map is mapped to the
memory region. Each entry in the bitmap-like data structure is mapped to each cache line
in the region. Once the bitmap is mapped to the memory region, the entry records whether
the corresponding line has already been accessed or not. The AMPM prefetcher detects
memory access patterns from the bitmap-like data structure that is mapped to the accessed
region. The hardware pattern matching logic is used to detect stride access patterns in the
memory access map. The result of pattern matching is affected by neither the memory
access order nor the instruction addresses because the bitmap-like data structure holds
neither the information that reveals the memory access order of past memory accesses nor
the instruction addresses. Therefore, the AMPM prefetcher achieves high performance even
when such aggressive optimizations are applied.

The AMPM prefetcher is evaluated by performing cycle-accurate simulations using the
memory-intensive benchmarks in the SPEC CPU2006 and the NAS Parallel Benchmark.
In an aggressively optimized environment, the AMPM prefetcher improves prefetch cover-
age, while the other state-of-the-art prefetcher degrades the prefetch coverage significantly.
As a result, the AMPM prefetcher increases IPC by 32.4% compared to state-of-the-art
prefetcher.
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1. Introduction

With the progress of the semiconductor process technology, the processor clock cycle time
has been significantly reduced. However, the decrease in off-chip memory access time has
been much less than that in the processor clock cycle time because the improvement in
off-chip memory technology has primarily resulted in a large memory capacity. As a result,
the off-chip memory latency of modern processor chips has become more than hundred of
processor clock cycles. The pipeline stall time due to one cache miss often becomes more
than hundred of processor cycles. This prevents the effective use of processor cores and
memory bandwidth.

Cache memories are used for reducing the average memory access time. For future
memory access, cache memories store recently accessed data and their neighbors. However,
cache memories are not effective when the data stored in the cache memory are not ac-
cessed repeatedly. To enhance the cache memory performance, hardware data prefetching
mechanisms have been proposed [1, 2, 3, 4], and several mechanisms are already being used
in commercial processors [5]. The hardware data prefetcher predicts the memory address
that will be accessed in the near future and fetches the data at the predicted address into
the cache memory in advance. When the prefetch address is predicted correctly and the
prefetch request is issued sufficiently early to corresponding memory requests, hundreds of
cycles of off-chip memory can be hidden and the pipeline stall time due to off-chip memory
access is eliminated.

Many prefetching methods have been proposed in order to hide the off-chip memory
access latency [1, 5]. Sequential prefetchers are known as the simplest prefetchers. They
fetch the cache lines that immediately follow the cache line that was accessed last. More
advanced prefetching methods involve the use of a prediction table. The table is indexed
by the instruction addresses or the address of the previous memory access. The prefetcher
detects particular memory access patterns from the memory access history recorded in
the table. The stride prefetcher detects a constant stride [2]. The Markov prefetcher
detects probabilistic address correlation [3]. Since these prefetchers support only simple
memory access patterns, the performance improvement achieved by using these prefetchers
is limited. Prefetchers in which a global history buffer (GHB) is used are known as state-
of-the-art prefetchers [4, 6, 7]. A GHB holds all recent memory accesses in a FIFO buffer
and uses a linked list to store recently accessed memory addresses, which are later used to
detect memory access patterns. This prefetching technique is more effective than the above-
mentioned simple table-based prefetching methods because the hardware resource is used
to store recently missed addresses. However, this technique involves sequential accesses and
modifications to the linked list in almost all memory accesses. This results in long latency
in the prediction of addresses to be prefetched.

Unfortunately, existing prefetchers suffer from one or more of following drawbacks: (1)
The performance improvement is low when the prefetchers detect only simple memory
access patterns (e.g., sequential prefetchers). The simple prefetchers such as sequential
prefetchers achieve insufficient prefetch coverage. This is due to the prefetcher cannot
detect more complex memory access patterns. (2) The latency in address prediction is
long when the prefetchers cannot issue prefetch requests until the corresponding prefetch
states become steady (e.g., stride prefetcher using reference prediction table). The stride
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prefetcher [2] cannot issue prefetch requests before the corresponding prefetch state of the
prediction table become the steady state. The long latency in address prediction suppresses
the rate of prefetch requests from prediction. (3) Large amount of hardware resources is
required to record past memory accesses (e.g., stride, Markov, and GHB prefetchers). For
predicting future memory accesses, most prefetchers hold address offsets of past memory
accesses. Such prefetchers require fixed amount of history space for holding the information
on each past memory access. (4) The modification and alternation of the order in the
memory address sequence due to optimization techniques such as out-of-order execution
often prevent the prefetcher from detecting memory access pattern accurately (e.g., stride,
Markov, and GHB prefetchers). Prefetchers that predict memory access patterns on the
basis of differences between the addresses in a sequence of consecutive memory accesses
suffer from this drawback because the address sequence, which is used to calculate the
difference, is changed by the optimizations such as out-of-order execution.

In this paper, we propose a new data prefetching method: access map pattern matching
(AMPM). The AMPM prefetcher has two key components, namely, a memory access map
and hardware pattern matching logic. A memory access map is a bitmap-like data structure
for holding past memory accesses. The AMPM prefetcher divides the memory address space
into memory regions of a fixed size. The memory access map is mapped to the memory
region. Each entry in the bitmap-like data structure is mapped to each cache line in the
region. Once the bitmap is mapped to the memory region, each entry in the bitmap-like
data structure records whether the corresponding line has already been accessed or not.
The hardware pattern matching logic detects memory access patterns from the memory
access map.

The AMPM prefetcher helps to overcome the drawbacks of existing prefetcher in the
following manner: (1) The AMPM prefetcher achieves the high performance because it
improves the prefetch coverage significantly. The AMPM prefetcher achieves high prefetch
coverage because the pattern matching detects all possible strides at a time. From the
detected stride patterns, the AMPM prefetcher predicts more future memory accesses than
that of existing prefetchers do. (2) The latency in address prediction is low because the
hardware pattern matching logic can detect all possible memory access patterns immedi-
ately. The memory access map can issue prefetch requests when it detects memory access
patterns in the memory access map. (3) The hardware cost for the prefetching mechanism
is reasonable. The memory access map uses a bitmap-like data structure that can record a
large number of memory accesses within a limited hardware budget. The pattern matching
logic is composed of basic arithmetic units such as adders and shifters. (4) The prefetcher
is robust to modification and alternation of the order in the memory address sequence.
The AMPM prefetcher detects prefetch candidates under an aggressively optimized envi-
ronment because the memory access map is affected by neither the memory access order
nor the instruction address.

This paper is organized as follows: In section 2, our motivation for undertaking this
study is presented. In section 3, the design overview, data structure, and the algorithm of
the AMPM prefetcher are described. In section 4, the hardware implementation and the
complexity of the AMPM prefetcher are discussed. In section 5, the evaluation methodology
and experimental results are presented. In section 6, related studies are presented, and
finally, in section 7, the paper is concluded.
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Figure 1: Memory Access Pattern of milc in SPEC CPU2006.

2. Background and Motivation

As described in the previous section, prefetchers often interfere with the optimization tech-
niques such as loop unrolling and out-of-order execution. In this section, we discuss such
interference in detail. One of our motivations for undertaking this work is the need to design
a prefetcher that is compatible with other optimization techniques and whose performance
is not degraded under an aggressively optimized environment.

2.1. Interference by Other Optimizations

To effectively detect the memory access pattern, existing prefetchers classify memory ac-
cesses according to the instruction that initiates the memory access. This is helpful for
detecting the constant stride access pattern of a load instruction in a loop structure. How-
ever, when a compiler duplicates memory access instructions by static instruction scheduling
such as loop unrolling, the locality of particular memory access instructions is reduced. This
means that the optimization techniques such as loop unrolling interferes with the prefetcher
that uses the addresses of memory access instructions that initiate a cache miss.

To detect memory access patterns, existing prefetchers use differences between addresses
in a sequence of consecutive memory accesses. This strategy allows the prefetcher to effec-
tively detect several memory access patterns such as constant strides and delta correlations.
However, the prefetcher cannot detect memory access patterns accurately when the mem-
ory access order is changed from the program order. Out-of-order execution violates this
restriction because the memory access order is changed by out-of-order execution.

Figure 1 shows an example of out-of-order memory access. The L2 cache miss addresses
of milc in SPEC CPU2006 during 3000 processor cycles are plotted. Each symbol indicates
the memory access instruction that initiates the corresponding cache miss. Four instructions
and 18 cache misses are observed in Figure 1. Three cache misses that are observed in a
short period form a group. Six groups can be found in the figure. The address correlation
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between two adjacent groups is a 2.0 KB stride access pattern and the interval time of two
adjacent groups is about 500 cycles. In this memory access pattern, the memory access
order in each group and the stride corresponding to each instruction vary. The properties
are described in detail as follows. (1) Load C cannot be observed in the second and sixth
groups because of the order of memory accesses between Load B and Load C. This prevents
the prefetchers based on the reference prediction table [8] from detecting a correct stride.
The prefetcher will detect not only 2.0 KB stride but also 4.0 KB stride around Load C
because the Load C cannot be observed in the second and sixth groups. (2) The memory
access order of the first group is medium (Load A), low (Load C), and high (Load D),
while that of the fifth group is low (Load C), medium (Load A), and high (Load D). The
modifications and alternations of the order in the memory address sequence prevent the
prefetchers, which use address correlations of the previous memory accesses such as Markov
prefetching [3], from detecting memory access patterns accurately.

2.2. Interference with Other Optimizations

Most existing prefetchers expect that actual memory accesses should not be affected by
the prefetch requests. However, the actual memory accesses are often changed by the
prefetch requests because some off-chip memory accesses that are initiated by cache misses
are eliminated by the useful prefetches. In such cases, existing prefetchers try to reconstruct
the history of past memory accesses that would have been observed if the prefetch had not
been performed. To reconstruct the history of past memory accesses, many prefetchers add
a bit (prefetch bit) to the cache line. A prefetch bit represents whether the corresponding
line has already been fetched by the prefetch request. It is set when a prefetched line is
inserted into the cache memory and unset when the corresponding line is accessed by the
actual memory access. When the actual memory access hits a cache line whose prefetch bit
is set, the memory access is handled as a cache miss in the prefetcher [4]. Although this
approach helps to reconstruct the history of past memory accesses, it requires the prefetcher
to be tightly coupled with the cache memory. This is because the prefetch bit is accessed
frequently and the lookup should be completed within a short time. On the other hand,
the prefetchers that use instruction addresses are required to be tightly coupled with the
processor core because the instruction addresses are not typically available outside of the
processor core [9]. When the prefetcher must be tightly coupled with both the cache memory
and the processor core, the cache memory should be tightly coupled with the processor core.
This leads to interference with the distributed cache architecture such as the NUCA.

Several adaptive prefetching techniques such as [10] involve the use the prefetch bit.
Adaptive prefetching techniques evaluate the usefulness of the past prefetch requests to
adjust the prefetch degree that determines the maximum number of prefetch requests at
a time. When the usefulness is determined by the accuracy of the prefetch requests, the
usefulness is evaluated on the basis of the prefetch bit. When the prefetch bit of the
evicted cache line is set, the corresponding prefetch request is regarded as a useless prefetch
because the prefetched cache line is not accessed before the corresponding memory access
occurs. When the prefetch bit of the accessed cache line is set, the corresponding prefetch
request is regarded as a useful prefetch because the prefetched cache line is accessed by
actual memory access. The adaptive prefetching techniques collect the number of the useful
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prefetch requests and the useless prefetch requests to determine the usefulness of the past
prefetch requests. This process interferes with the distributed cache architecture because
the prefetch bit, which is the information on the cache memory, is used for adjusting the
prefetch degree.

3. Access Map Pattern Matching

In this section, we propose a novel data prefetching method, namely, access map pattern
matching (AMPM). As described in the previous section, the performance of the prefetch
algorithm often degraded when either memory access orders or instruction addresses are
used. To avoid such situations, we design the AMPM prefetcher such that it detects memory
access patterns only on the basis of the memory locations that have been accessed in the
past.

The AMPM prefetcher employs two key components: a memory access map and pattern
matching logic. The memory access map is a bitmap-like data structure for holding memory
locations that have been accessed. To predict future memory access accurately, the memory
access map records only the information on the memory accesses which recently occurred
because we assume that the information on the memory accesses in the distant past does
not reflect the current memory access patterns. We call the period, in which the memory
accesses reflect current conditions, as “recent past.” Generally, the data corresponding
to such recent past memory accesses have been stored on the cache memory because the
corresponding data are recently accessed. The pattern matching logic is a combinational
logic for detecting memory access patterns from the memory locations held in the memory
access map. Since the AMPM prefetcher uses only the memory locations, it is not affected
by the other optimizations such as out-of-order execution and loop unrolling.

Figure 2 shows an overview of the AMPM prefetcher. The memory address space is
divided into memory regions of a fixed size; we call these regions “zones.” The number of
cache lines in the zone is equal to the number of the entries in the bitmap-like data structure.
Recently accessed zones are called “hot zones,” which are similar to the concentrated zone
(Czone) [11]. The AMPM prefetcher uses the fixed number of hot zones. The total covered
area by hot zones should not be larger than the capacity of the cache memory in order to
prevent the memory access map from holding the information on the memory accesses that
occur in the distant past1.

A memory access map is mapped to each hot zone to holds memory locations that
have been accessed in the recent past. Each entry in the bitmap-like data structure of the
memory access map is mapped to each cache line in the corresponding hot zone. The entry
records memory accesses to the corresponding cache line. The information on the history of
recent past memory accesses corresponding to the entry is represented as a prefetch state.
The memory access maps are stored in a table, which we call memory access map table.
The memory access map is mapped to the zone when the memory accesses occur in zones
to which no memory access maps are mapped. When all memory access maps are already
mapped to zones, the memory access map in the table is replaced by the LRU policy. When
a memory access map is evicted from the memory access map table, the information held in

1. In this work, the total covered area by the hot zones is 2.0 MB (8.0 KB zone × 256 memory access maps)
while the capacity of L2 cache memory is 2.0 MB.
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Figure 2: Overview of the AMPM Prefetch.

the memory access map is discarded. By discarding the old information on the evicted maps,
the AMPM prefetcher avoids to use the information of memory accesses in the distant past
for predicting future memory accesses. If the memory access map holds all past memory
accesses, the AMPM prefetcher cannot detect memory access patterns effectively because
the information of memory accesses in the distant past is involved to predict future memory
accesses.

On a memory access, the corresponding memory access map is read from the table.
The read map is sent to the pattern matching logic. The pattern matching logic generates
prefetch requests and issues them to the memory subsystem.

3.1. Memory Access Map

The memory access map records memory accesses occur in each hot zone. Each entry in
the bitmap-like data structure is mapped to each cache line in the hot zone. Each entry
holds information on the history of recent past memory accesses to the corresponding cache
line. The history of recent past memory access is recorded in a form of 2-bit state, which
we call a prefetch state. The prefetch state of each cache line is one of the following three
states: “Init,” “Prefetch,” and “Access.”

The state diagram of a memory access map is shown in Figure 3. When the memory
access map is mapped to the hot zone, all prefetch states in the memory access map are
initialized to the Init state. When the prefetch request is issued to a cache line in the Init
state, the corresponding state changes to the Prefetch state. When the actual memory access
is issued to the cache line, the corresponding state changes to the Access state. Collectively,
the state transitions occur when (1) the actual memory access for the corresponding cache
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line is observed or (2) the prefetch request for the corresponding cache line is issued. The
AMPM prefetcher assumes that the prefetch state reflects a state of corresponding cache
line because all recent past memory accesses occur in hot zones are recorded on the prefetch
states. Unless the data of the memory accesses in the distant past have not been evicted
from the cache, the assumption that the prefetch state reflects a state of corresponding
cache line is correct.

The prefetch state indicates the state of the corresponding cache line. When the prefetch
state is not the Init state, the data on the corresponding cache line have already been fetched
because the prefetch request has been issued to the cache line or the actual memory access
has occurred for the cache line in the recent past. Therefore, there is no need for a prefetch
request to be issued to the corresponding cache line unless the fetched data are evicted from
the cache memory2. This feature eliminates the need for cache probes to check whether
the data of the prefetch target have already been fetched in the cache. In this work, the
prefetch requests are issued only to the cache lines which are in the Init states in the AMPM
prefetcher.

Since the state transitions are unidirectional, the number of the Access states mono-
tonically increases until the memory access maps are replaced and the number of the Init
states approaches zero. When the number of the Init states becomes zero, the AMPM
prefetcher cannot issue additional prefetch requests because it can issue prefetch requests
to the memory location whose prefetch state is the Init state. However, we assume that
there is no need for additional prefetch requests in such situation since almost all data in
the hot zones are already stored in the cache memory.

During a memory access, the lookups of the memory access map table is performed in
parallel with the cache access. When the corresponding memory access map is not found
in the table, the LRU memory access map is unmapped from the current mapped zone
and maps the unmapped map to the new zone that corresponds to the current memory
access. Then, all the prefetch states of the replaced memory access map are initialized to
the Init state. Finally, the memory access map is updated to the MRU position of the
LRU stack. When the corresponding memory access map is found in the table, the AMPM
prefetcher reads the map from the table. The AMPM prefetcher sends the memory access

2. In our assumption, the fetched data which should be used in the future is rarely evicted in advance of the
corresponding actual memory access because the long time is needed to evict the newly inserted cache
line in the modern large cache memory.
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map to the pattern matching logic for generating prefetch requests. The information on
the prefetch requests that are generated by the pattern matching logic is sent as feedback
to the corresponding memory access map. The feedback information is used to update the
corresponding prefetch state. Finally, the memory access map is updated to correspond to
the MRU position of the LRU stack.

3.2. Generating Prefetch Requests by Pattern Matching

The AMPM prefetcher employs a prefetch generator for generating prefetch requests. The
prefetch generator employs hardware pattern matching logic for detecting memory access
patterns from the memory access map. When the memory access map that is read from
the memory access map table is issued to the prefetch generator, the prefetch generator
tries to find the memory access pattern from the map. When the memory access patterns
are found, the prefetch generator issues prefetch requests, which is generated based on the
patterns, to the memory subsystem.

During an actual memory access, three consecutive memory access maps are read from
the memory access map table in parallel. One is a memory access map of the accessed
zone that corresponds to the actual memory access. The other two maps are maps of the
adjacent zones that immediately precede and follow the accessed zone3. Three consecutive
memory access maps are concatenated to make one large memory access map. From the
concatenated map, the hardware pattern matching logic detects all possible stride access
patterns.

Here, let t be the requested address and let N be the number of cache lines in one
zone; the hardware pattern matching logic simultaneously checks the state of the requested
addresses t + k, t + 2k, and t + 2k + 1 for all possible k = 0, 1, ..., N/2 − 1, and if the states
of t + k and t + 2k (or t + 2k + 1) are both the Access states, then −k is considered to
be a stride and the address t − k becomes a prefetch candidate. In this manner, multiple
prefetch candidates are generated in parallel. Then, the prefetch generator selects the d
closest candidates to the address of the corresponding actual memory access where d is the
prefetch degree. Finally, the selected prefetch requests are issued to the cache memory. The
prefetch request that is nearest to the actual memory access is issued first, and the second
nearest one is issued in next cycle.

Figure 4 shows an example of the prefetching scheme. When the addresses 0x01, 0x03,
and 0x04 have already been accessed and an actual access for 0x05 reaches the cache mem-
ory, the prefetch generator detects the following two candidates: (1) 0x07, whose address
correlation set is {0x01, 0x03, 0x05}, and (2) 0x06, whose address correlation set is {0x03,
0x04, 0x05}. In this case, the prefetch request for 0x06 is issued first since 0x06 is nearer
to 0x05 than to 0x07.

3.3. Adaptive Prefetching

To control the prefetch degree, we can adopt an adaptive prefetch technique. An adap-
tive prefetching estimates the usefulness of the past prefetch requests and required memory
bandwidth for throttling the prefetch degree. We propose an adaptive prefetching tech-

3. Let t be the address of the accessed zone and let z be the zone size; the address of one adjacent zone is
represented as t − z and the other zone is represented as t + z.

9



Ishii, Inaba, & Hiraki

Init
Access

Init
Access
Access

Init→AccessActual 
Access

Stride = 2

PrefetchInit→Prefetch
Init→Prefetch Prefetch

Stride = 1

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

Figure 4: Pattern Matching on the Memory Access Map.

Description State Transition

NGP Number of Good Prefetches From “Prefetch” to “Access”

NTP Total Number of Prefetches From “Init” to “Prefetch”

NCM Number of Raw Cache Misses From “Init” or “Prefetch” to “Access”

NCH Number of Raw Cache Hits From “Access” to “Access”

Table 1: Collecting Statistics as Run-time information.

nique that is implemented on the AMPM prefetcher. The AMPM prefetcher collects four
statistics to estimate the usefulness. These statistics are collected from the state tran-
sitions of the memory access map. The manner in which four state transitions can be
collected is summarized in Table 1. Note that NCM (raw cache miss) and NCH (raw
cache hit) denote the expected number of cache misses and cache hits if a prefetch is not
performed. To estimate the usefulness of the past prefetch requests and the required mem-
ory bandwidth, the AMPM prefetcher estimates the prefetch accuracy, prefetch coverage,
cache hit ratio, and the number of off-chip memory requests from the four state transi-
tions that are collected. The prefetch accuracy and the prefetch coverage are defined as
Paccuracy = NGP /NTP and Pcoverage = NGP /NCM , respectively. The cache miss ratio is
defined as Pcachehit = NCH/(NCM + NCH), and the number of off-chip memory requests is
defined as Nrequests = NCM −NGP + NTP . The AMPM prefetcher determines these values
in each fixed-length epoch (Tepoch). In this study, Tepoch is 256K processor clock cycles.

The AMPM prefetcher adjusts its prefetch degree on the basis of the estimated met-
rics. It provides the “required memory bandwidth” and “usefulness of the past prefetch
requests” for adjusting the prefetch degree. The AMPM prefetcher limits the prefetch de-
gree on the basis of the bandwidth-delay product, which is calculated from the required
memory bandwidth, i.e., Nrequests/Tepoch. The bandwidth-delay product is defined as
Mbandwidth = (Nrequests/Tepoch) × Tlatency, where Tlatency is the latency for the off-chip
memory in processor clock cycle. The AMPM prefetcher also limits the prefetch degree on
the basis of the usefulness of the past prefetch requests. The limit of the prefetch degree
Museful is adjusted on the basis of the statistics collected in the previous epoch. The esti-
mated metrics of the prefetch accuracy, prefetch coverage, and cache hit ratio are compared
with the corresponding threshold values. On the basis of the result of the comparison, the
prefetcher throttles the prefetch degree Museful using the policy shown in Table 2. The min-
imum value of the limits (Mbandwidth and Museful) is used as the actual maximum prefetch
degree.
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Pcoverage Paccuracy Pcachehit Action

High (> 25.0%) High (> 50.0%) Don′t care Increment Prefetch Degree

High (> 25.0%) Don′t care Low (< 75.0%) Increment Prefetch Degree

Don′t care Low (< 25.0%) High (> 87.5%) Decrement Prefetch Degree

Low (< 12.5%) Don′t care High (> 87.5%) Decrement Prefetch Degree

Low (< 12.5%) Low (< 25.0%) Don′t care Decrement Prefetch Degree

Other cases No Action

Table 2: Prefetch Degree Control Performed by Collecting Run-time Information.
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Figure 5: Block Diagram of AMPM Prefetcher.

The feature of the adaptive prefetching is that the AMPM prefetcher collects run-time
information only from the memory access map, while the other adaptive prefetching methods
like Feedback Directed Prefetching [10] involve the use of run-time information on other
components such as the cache memory. Owing to this feature, the AMPM prefetcher is
decoupled from other components such as the cache memory and the processor core.

4. Hardware Design & Complexity

4.1. Hardware Design

As shown in Figure 5, the AMPM prefetcher consists of memory access map table and a
prefetch generator. The memory access map table holds memory access maps in a set-
associative cache structure. The prefetch generator implements the pattern matching logic.
The request path from the processor core to the L2 cache memory is also distributed to the
memory access map table. When the actual memory request is issued to the L2 cache, the
request is also issued to the memory access map table. Then, the corresponding memory
access maps are read from the table and the read maps are sent to the prefetch generator.
The prefetch generator tries to detect memory access patterns by the pattern matching.
When the patterns are found, the prefetch generator makes prefetch requests on the basis
of the detected memory access patterns. The generated requests are sent to the requests
arbiter. The request arbiter selects the request sent to the L2 cache. In the request arbiter,
the actual request has higher priority than the prefetch requests. Finally, the information
on the issued prefetch request is feedbacked to the corresponding memory access map.

The advantage of the AMPM prefetcher is that the AMPM prefetcher obtains sufficient
run-time information from the request path, while existing prefetchers have to collect more
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Init InitPrefetch Access Access

・・・・・・・・・・

Memory Access
Map Table

2N bit2N bit2N bit

Figure 6: Four-bank Memory Access Map Table.

information from cache memories and processor cores. Thus, it allows the AMPM prefetcher
can be decoupled from both the processor core and cache memories.

4.1.1. Memory Access Map Table

The four-bank configuration of the memory access map table is shown in Figure 6. The
design of the memory access map table is similar to that of a multi-banked set-associative
cache memory. The memory access map table is referred by an address tag, which is
represented by the high-order bits of a memory address. Each memory access map holds N
states, where N is the number of cache lines in one zone. The input of this component is the
address of the actual memory access. The output is a concatenated map that is composed
of three consecutive memory access maps. The concatenated map consists of 3N prefetch
states.

The memory access map table has more than three banks for reading three consecutive
memory access maps in parallel. Each bank consists of a tag array and a map array. The
tag array holds the high-order bit of the corresponding zone address and LRU information.
The map array holds 2-bit state maps of the memory access map. When a request reaches
the memory access map table, the corresponding map and two adjacent maps are read from
the table. The read maps are rotated by the lower bit of the address, and the rotated maps
are concatenated. Finally, the concatenated map is sent to the prefetch generator.
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AccessAccess AccessPrefetchInit

Actual Request

Memory Access Map Shifter (Left Shift)

InitAccess AccessAccess Init
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Address
+1 +2 +3 +4

・・・・

+N

＋

Figure 7: Pattern Matching Logic for Stride Detection.

4.1.2. Prefetch Generator

The prefetch generator is responsible for pattern matching in the AMPM prefetching. It
generates prefetch requests when it receives the concatenated memory access map from
the memory access map table. The prefetch generator produces one prefetch request in
each cycle. Prefetch requests to the forward and the backward of the address of the actual
memory access are generated separately, and thus, the prefetch generator employs a copy of
pattern matching logic4. Figure 7 shows the block diagram of the forward prefetch generator
whose zone size is N .

The prefetch requests for each direction are produced by the following steps. First, the
memory access map (A) from the memory access map table is shifted for aligning the map.
The state corresponding to an actual accessed address is aligned at the edge of the memory
access map (B) for forward prefetching. The memory access map (F) is a shifted map
for backward prefetching. Second, the pattern matching logic produces multiple prefetch
candidates in parallel. These candidates are generated as a bitmap. The bitmap is stored
in the pipeline register (C). The kth request is generated by pattern matching of the entry
at k, 2k, and 2k + 1 in (B). N OR-AND logics of the pattern matching logic check whether
the corresponding states are the Access states. When k and 2k (or 2k + 1) in the (B) are
the Access states, the kth position is identified as a prefetch candidate. The output of the
pattern matching logic is filtered by the kth entry in (F). This filter checks whether a state

4. The forward prefetch means the prefetch request to t + k when the t is the address of actual memory
request and k is positive integer. The backward prefetch means the prefetch request to t − k.
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of prefetch target is the Init state or not. The prefetch candidate is rejected when the
corresponding state in (F) is not the Init state. In Figure 7, (D) and (D’) are the prefetch
candidates. The nearest candidate bit (D) is selected by the priority encoder. The selected
candidate bit is cleared to issue other requests in the next cycle. Then, the encoded address
offset is added to the actual accessed address. Finally, the generated address is issued as a
prefetch request.

4.2. Hardware Cost and Complexity

The hardware resource necessary for the AMPM prefetcher is storage for the memory access
map table and a combinational circuit for the pattern matching logic. The size of the map
array for the memory access map table is 2N bits when the map holds N states. The
tag array holds the higher-order bit of memory address and LRU information. When the
AMPM prefetcher uses 48-bit address, 64 states, 256 maps, an 8-way set-associative, and
a 128B cache line size, the total budget size becomes 256 maps × ((2 bits × 64 states) +
35 bits (tag) + 3 bits (LRU)) = 42496 bits (approximately 5.2 KB). The complexity of the
memory access map is comparable to that of the set-associative cache memory, as shown in
this section. The pattern matching logic requires N -bit integer shifters for the access map
shifter, N OR-AND logics for pattern matching, N -bit priority encoders, and offset adders
that are composed of small adder and increment logic. All of them are primitive functions in
the arithmetic logic unit (ALU). This indicates that the complexity and the hardware cost
of the pattern matching logic are comparable to that of the ALU. Collectively, the hardware
cost and complexity of the AMPM prefetcher is reasonable for a modern processor.

5. Evaluation

In this section, we evaluate the AMPM prefetcher with the following objectives: (1) to
show that the AMPM prefetcher is effective and is particularly efficient compared to other
prefetchers when other optimizations are applied, and (2) to present a detailed analysis of
the AMPM prefetcher, e.g., in terms of a comparison of adaptive and fixed degree prefetch,
the accuracy of metrics that are used for adaptive prefetching, and comparison of zone sizes.

5.1. Evaluation Methodology

We evaluate the AMPM prefetcher with the SESC simulator [12]. The system is a four-way
superscalar processor with a large L2 cache. The main parameters are listed in Table 3.
We evaluate both the in-order core and out-of-order core for evaluating the effect of an
out-of-order execution. This model does not employ any prefetch buffers, and thus, the
prefetch data are directly stored in a cache memory.

In the evaluated configuration, the AMPM prefetcher is constructed with an 8-way 256-
entry memory access map table. The map is replaced by the LRU policy. We use 8 KB
as the baseline zone size of memory access map. This implies that each zone includes 64
cache lines. In this configuration, the total budget size is 5.2 KB (see section 4.2). In the
baseline prefetcher, the prefetcher attempts to issue four prefetches in one actual memory
access (prefetch degree = 4).
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Processor 4 Decode / 4 Issues / 4 Commits

Branch Prediction Combined 8KB Gshare, 8KB BIM, 8KB Meta

Reorder Buffer 128 entries

Load Queue 32 entries

Store Queue 32 entries

Execution Unit 2 ALU (latency 1 cycle), 2 FPU (latency 4 cycle)
2 MEM (1 cycle for address generation)

L1 Instruction Cache Memory 32KB, 4-way 128B line, latency 1 cycle, 1 access / cycle

L1 Data Cache Memory 32KB, 4-way 128B line, latency 1 cycle, 2 access / cycle

L2 Unified Cache Memory 2MB, 8-way 128B line, latency 16 cycles, 1 access / 4 cycles

Memory System 64 MSHR, latency 400 cycles, Clock ratio 1:4, 16B memory bus

Table 3: Configuration of Processor Model.

For comparison, we evaluate the PC/DC/MG prefetcher [7]. We select PC/DC/MG as
a representative of a modern high-performance prefetcher. For the prediction, PC/DC/MG
uses the memory address sequences categorized by instruction addresses and a miss graph,
which represents correlations between instructions that cause cache misses. PC/DC/MG
uses (1) temporal correlations of memory access instructions, (2) memory access orders,
and (3) a prefetch bit stored in the cache tag. As shown in [7], it probes the cache memory
before issuing a prefetch request, and a four-cycle penalty is added to each cache probe.
For comparison, we configure PC/DC/MG so that its size is equivalent to that of our
AMPM configuration: 256 entries for a global history buffer (GHB) and index table (IT),
and a 2.0 KB budget for prefetch bit for collecting run-time information. Consequently,
the total budget size of PC/DC/MG becomes 47872 bits (approximately 5.8 KB) with a
48-bit address; the IT requires 256 entries × (48 bits (tag) + 8 bits (head pointer of GHB)
+ 8 bits (next stream) + 3 bits (confidence counter)), GHB requires 256 entries × (48
bits (address) + 8 bits (pointer to next entry)), and prefetch bit requires 16384 bits. The
prefetcher attempts to issue 16 prefetches at once (prefetch degree = 16).

We use 15 benchmark programs selected from the SPEC CPU2006 and the NAS Parallel
Benchmark for our evaluation. We use a reference input for the SPEC CPU2006 and class
A for the NAS Parallel Benchmark. The criterion in benchmark selection is the number of
off-chip memory requests. The omitted benchmark program has the small number of off-
chip memory accesses. Each selected benchmark generates at least 1.0 M off-chip memory
requests in the 1.0 G instruction program slice, which is analyzed by SimPoint [13].

We compile selected benchmarks using GCC 4.4 with two different compile options:
“-O3 -fomit-frame-pointer -funroll-all-loops,” which we call “aggressive,” and “-O2,” which
we call “conservative.” The most important difference between these two options is loop
unrolling of the aggressive configuration. All the benchmarks are fast forwarded to evaluate
the program slices that are analyzed by SimPoint [13].

5.2. Comparison with Competitive Prefetcher

We compare the AMPM prefetcher with a competitive prefetcher (PC/DC/MG). To eval-
uate the compatibility with other optimizations, we examine four types of configurations
with different optimizations listed in Table 4.
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(a) OO-O3 (b) IO-O3 (c) OO-O2 (d) IO-O2

Core Configuration Out-of-order core In-order core Out-of-order core In-order core

Compile Option Aggressive (-O3) Aggressive (-O3) Conservative (-O2) Conservative (-O2)

Table 4: Benchmark Configurations.
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Figure 8: IPC performance with Different Configurations.

5.2.1. Overall Performance

Figure 8 shows the overall performance of AMPM, PC/DC/MG, and the performance in
the case without any prefetch, which we denote NOPREF, for four configurations listed in
Table 4.

In all cases, both AMPM and PC/DC/MG improve their performance compared to
NOPREF. They show almost the same performance for (d) IO-O2 (in-order, -O2): AMPM
degrades IPC by 0.5% from PC/DC/MG in Gmean, but AMPM attains an IPC that is
better than that of PC/DC/MG by 32.4% for (a) OO-O3 (out-of-order execution, -O3).
The result indicates that the AMPM prefetch is robust to other optimizations. In om-
netpp, PC/DC/MG outperforms AMPM for (c) and (d) xx-O2, while AMPM outperforms
PC/DC/MG in (a) and (b) xx-O3. On the other hand, in FT, PC/DC/MG outperforms
AMPM in (b) and (d) IO-xx, while AMPM outperforms PC/DC/MG in (a) and (c) OO-xx.
These results show that both an out-of-order execution and loop unrolling often degrade
the performance in PC/DC/MG.

Note that (1) the reason why the IPC of the in-order core is lower than that of the
out-of-order core is that the in-order core suffers from other bottlenecks such as instruction
scheduling and (2) the reason why IPC of -O2 configuration is higher than that of -O3 con-
figuration is that -O2 configuration includes some non-critical (or not essential) instructions
such as frame-pointer handling operations. Generally, non-critical critical instructions have
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Figure 9: Analysis of Off-chip Memory Requests: AMPM (upper), PC/DC/MG (lower).

high instruction level parallelism, thus the -O2 configuration increases IPC but it does not
reduce overall execution time.

5.2.2. Analysis of Off-chip Memory Requests

For further analysis of the difference shown above, we categorize all off-chip memory ac-
cesses into four groups on the basis of their prefetch coverage; “fully covered” indicates
a useful prefetch which hides latency completely, “partially covered” indicates a useful
prefetch which hides part of latency, “Uncovered” indicates actual memory access, and
“Overpredicted” indicates useless prefetch.

Figure 9 shows the detailed analysis of off-chip memory requests. The prefetch coverage,
which is the sum of fully covered and partially covered, of the AMPM exceeds 90.0% in
9 out of the 15 benchmarks for OO-O3; on the other hand, that of PC/DC/MG can not
exceed than 90.0% for OO-O3.

Another feature obtained in Figure 9 is the difference in the prefetch performance
among different configurations. The coverage achieved by AMPM is 5.0% greater than that
achieved by PC/DC/MG in 13 out of the 15 benchmarks in OO-O3. On the other hand, the
prefetch coverage achieved by AMPM is 5.0% higher than that achieved by PC/DC/MG in
5 out of the 15 benchmarks in IO-O2 because PC/DC/MG reduces the prefetch coverage in
a more aggressive configuration. In 9 out of the 15 benchmarks, PC/DC/MG reduces the
prefetch coverage in OO-O3 by more than 10.0% compared to that in IO-O2. In omnetpp,
milc, zeusmp, and sphinx3, the compiler optimizations degrade the performance by more
than 10.0% in PC/DC/MG. In lbm, FT, and MG, the out-of-order execution degrades the
performance by more than 10.0% in PC/DC/MG. AMPM reduces the prefetch coverage in
OO-O3 by a maximum of 5.0% from compared to that in IO-O2. Thus, it is confirmed that
the AMPM prefetch helps to realize a highly robust prefetching algorithm.
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Figure 10: Performance Impact of Prefetch Degree (Prefetch Degree=1,4,16,and Adaptive).

5.3. Characteristic Evaluation of Access Map Pattern Matching

In this subsection, we evaluate (1) the impact of the adaptive prefetch on performance and
(2) the impact of the zone size of the memory access maps on performance.

5.3.1. Adaptive Prefetch

As shown in the previous section, AMPM can collect run-time information to adjust the
prefetch degree. The run-time information is collected only from the state transitions within
the memory access map. AMPM does not probe the cache memory, unlike existing adaptive
prefetching algorithms. To show this feature, we compare the adaptive prefetching and
constant prefetch degrees that vary among Degree 1, Degree 4, and Degree 16.

The performance impact of adaptive prefetching is shown in Figure 10. From this
figure, it can be seen that the performance is not improved among Degree 4, Degree 16,
and Adaptive. With Degree 16, the highest performance is achieved, but it outperforms the
other prefetch degrades by only 0.2% in geometric mean. Moreover, Degree 16 increases the
number of over-predicted prefetches by 3.2% compared to Degree 4 in xalancbmk. On the
other hand, the adaptive prefetching reduces the number of over-predicted prefetches by
14.5% compared to Degree 4 and Degree 16 in omnetpp and xalancbmk. Thus, it is shown
that adaptive prefetching reduces the number of useless prefetches without degrading the
performance.

The other feature of the adaptive prefetching of AMPM is that the prefetcher collects
run-time information only from its own state transitions. We collect estimated metrics
(Pcoverage, Paccuracy, and Pcachehit) and actual metrics (prefetch coverage, prefetch accu-
racy, and cache hit ratio) and plot the relationship in Figure 11. We evaluate it with the
adaptive prefetching configuration. Each point represents the relationship of each bench-
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Figure 11: Correlation between estimated metrics and actual metrics.

mark. The results reveal correlations between the estimated metrics and the actual metrics.
We evaluate the relationships by the regression analysis method. The analysis results show
that the coefficient of correlation is 0.98 for prefetch coverage, 0.94 for prefetch accuracy,
and 0.87 for the cache hit ratio. Qualitatively, metrics generated by AMPM are more neg-
ative estimates than the actual metrics. This is because of the undesirable replacement of
the memory access map. (A) and (B) in Figure 11 show that the estimated metrics are
much more negative than the actual metrics. These points are observed in mcf. In mcf,
numerous off-chip memory requests are issued to a large area, and therefore, the access
maps are replaced within a very short interval. When the memory access map is replaced
too frequently, the prefetcher cannot count NGP . It is because the memory access maps are
evicted before the state of the corresponding cache line change from the Prefetch state to
the Access state.

5.3.2. Zone Size

Figure 12 shows the impact of the zone size on performance. In this figure, we evaluate
zones of size 2 KB, 8 KB (baseline), 32 KB, and 128 KB. The total number of employed
memory access maps is adjusted to fit the total budget size (approximately 5.5 KB). The
figure indicates that the total number of memory access maps is inversely proportional to
the zone size. In this evaluation, the prefetch degree is adjusted by adaptive prefetching.

The results show that the optimal zone size differs for different benchmarks. For a size
of 2 KB, libquantum, FT, and SP achieve the highest performance. In such a case, a large
area is accessed in a short time. This leads to undesired replacement of memory access maps
when the zone size is large because the total map count for the 2 KB zone is 64 times larger
than that for the 128 KB zone. On the other hand, CG achieves the highest performance
for the 128 KB zone. This is because of the large stride that cannot be detected when the
zone size is small.

The other interesting case is that of GemsFDTD. The achieved prefetch coverage is
90.5% in the 2 KB zone and 69.1% in the 128 KB zone, as compared to 14.4% in the 8
KB zone and 14.3% in the 32 KB zone. This is due to the large stride access pattern
in multiple loops. This large stride can be detected only when the zone size is 128 KB.
Therefore, higher coverage is achieved in the 128 KB zone than in the 8 KB zone and the 32
KB zone. However, this higher coverage cannot help to improve the performance because
the detection by the large stride is not early enough to completely hide the latency. On
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Figure 12: Performance Impact of Zone Size.

the other hand, a greater number of the prefetch requests are generated in the 2 KB zone
than in the 128 KB zone. This is because the outer loop is not large in this program and
AMPM holds sufficient entries to cover the entire inner stride in 2 KB zone. Therefore,
the memory access map is retained throughout the iteration of the innermost loop, while
the maps for larger zones are replaced. Then, memory accesses of the next iteration of the
multiple loops reach neighbors of the previous iteration. In other words, the access patterns
in the outer loop become multiple simple stream accesses to the consecutive area. As a
result, the prefetch coverage is well improved. Unfortunately, in this case, a large number
of useless prefetches are generated, and the memory bus is saturated with useless traffic.
This prevents performance improvement in the case of GemsFDTD when the zone size is 2
KB. This evaluation shows that there are advantages and disadvantages for each zone size,
but the 8 KB zone is adequate to satisfy many benchmarks.

6. Related Works

6.1. Hardware-Based Prefetching

Many prefetching methods have been proposed to hide the long off-chip memory access
latency [14]. In some of these methods, software support is used to issue prefetches [15, 16],
while the others are strictly hardware-based methods.

A sequential prefetcher [1] is the simplest hardware-based prefetcher. When a cache miss
is detected, the sequential prefetcher issues requests that obtain the following cache lines of
the accessed cache line. This prefetcher requires low-cost hardware and is already used in
commercial systems [5], but it improves the performance when application programs access
consecutive areas. More advanced prefetchers employ prefetching tables [2] to hold memory
access histories. The access key to these tables is an instruction address or data address
that causes a cache miss. In stride prefetching, a combination of the last memory address
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that causes a cache miss and an address stride is stored in a prefetch table entry. When
the same stride pattern is repeatedly detected in the entry, the prefetcher issues prefetch
requests to access the memory address with the same stride. In Markov prefetching [3], the
address correlation in a state transition is used for issuing prefetch requests.

In order to improve the efficiency of prefetching tables, global history buffers have been
proposed [4]. GHBs hold all cache miss requests in a circular buffer. The oldest entry
is overwritten when a new request is inserted. Each entry is classfied by the instruction
address and the memory region. Each entry in a GHB has a pointer to the next entry to
keep track of the history. The memory accesses are managed in linked lists. In this data
structure, the hardware resource focuses on recently missed addresses. This technique is
more effective than table-based prefetching and has many extensions. PC/DC/MG [7] is
one of the representative extensions of GHB. It exploits the correlation between multiple
streams for improving prefetch performance. The C/DC prefetcher [6] is also one of the
extensions of the GHB. The C/DC uses memory region (Czone) for classifying the memory
accesses. However, the C/DC cannot use zone concatenation that the AMPM prefetcher
uses. The C/DC fails to detect the prefetch opportunity on a border between the zones.

Spatial memory streaming (SMS) has been proposed in [17], and it is extended to
combining temporal patterns [18]. It holds spatial memory access patterns to predict the
future memory access patterns. In the case, high prefetch coverage can be achieved in
commercial jobs such as database benchmarks. This approach appears to be similar to
that adopted in the AMPM prefetcher. However, there are two differences between AMPM
and SMS. First, the address of memory access instructions are used as the triggers of
the prefetch in SMS. As described in section 2, the prefetcher using instruction address
degrades its performance with existing optimizations such as loop unrolling. Second, the
pattern history table for SMS requires a large budget for improving performance, and it
must be stored in off-chip memory. It increases the complexity of memory subsystem. On
the other hand, the AMPM prefetcher uses reasonable cost (approximately 5.2KB) for its
prediction, and therefore, the all budget for the AMPM prefetcher can be implemented
with the on-chip memory. The spatial memory streaming with rotated patterns [19] tries
to reduce the pattern history table size, but it could not achieve higher performance in the
first data prefetching championship [20].

6.2. Control of Prefetching Degree

Enhancements of the performance of existing prefetchers have been proposed in several
studies. The AC/DC prefetcher [6] is an extensions of C/DC. The AD/DC prefetcher
controls not only the prefetch degree but also the zone size for improving performance.
Adaptive zone size will be also useful for the AMPM prefetcher, and it will be investigated
in one of our future works. The Feedback Directed Prefetching (FDP) [10] adjusts the
prefetch degree and prefetch distance on the basis of the prefetch accuracy, timeliness,
and cache pollution caused by the prefetcher. To collect run-time information, the FDP
adds several flags to the cache memory. It increases the complexity of the cache memory
and requires the prefetcher to be tightly coupled with the cache memory. The Adaptive
Stream Prefetcher [21] adjusts the prefetch degree on the basis of the probability technique
that estimates stream length. It is extended in recent study [22]. The extended technique
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adjusts the prefetch degree without the status of the cache memory, and thus, it involves
less restrictions on other components. Focused prefetching [23] detects the load instructions
that cause the ROB commit stall and focuses hardware resources to avoid the commit stall.
It uses the memory access instructions to detect the LIMCOS (Load Incurring Majority
of COmmit Stall). As shown in this paper, localities of the LIMCOS are reduced by loop
unrolling. The performance improvement are also reduced in such a case.

These techniques are similar to our adaptive prefetching technique. However, these
prefetching techniques, except those in the adaptive stream prefetcher, use either the local-
ities of instruction addresses or prefetch bits. To avoid the interference with the existing
optimizations, these adaptive prefetching techniques also should be robust to existing opti-
mizations.

7. Conclusion

In this paper, we propose a new prefetching method: access map pattern matching (AMPM).
The AMPM prefetcher has two key components: a memory access map and hardware pat-
tern matching logic. It detects all possible stride patterns in parallel. The pattern match-
ing is robust to optimization techniques such as out-of-order execution because the pattern
matching uses neither the memory access order nor the instruction address. Therefore, the
AMPM prefetcher achieves high performance in an aggressively optimized environment.

The AMPM prefetcher has the following advantages over existing prefetchers: (1) It
achieves better coverage than existing prefetching mechanisms. It hides off-chip memory
access latency and improves performance. The experimental results show that the perfor-
mance of the AMPM prefetcher with a 5.2 KB budget is better than that of the PC/DC/MG
with a 5.8 KB budget by 32.4% in an aggressively optimized environment; the AMPM
prefetcher achieves better prefetch coverage than the PC/DC/MG. The prefetch coverage
of the AMPM prefetcher exceeds 90% in 9 out of the 15 benchmarks. The adaptive prefetch-
ing mechanism reduces the number of over-predicted prefetch requests. (2) As shown by the
experimental results, the AMPM prefetcher does not degrade the prediction performance in
an aggressively optimized environment where the memory access order changes, while the
existing prefetchers degrade the prefetch performance under the same conditions. This is
because the AMPM prefetcher eliminates restrictions via the instruction address and mem-
ory access orders. As a result, the AMPM prefetcher achieves higher prefetch coverage and
better performance than do existing prefetchers under an aggressively optimized environ-
ment. (3) The AMPM prefetcher can generate prefetch requests without probing the cache
memory for obtaining run-time information such as the prefetch bit. The AMPM prefetcher
estimates the cache status from the statistics of the state transition of the memory access
maps because the memory access map holds sufficient information for estimating the cache
status. It allows the prefetcher to be decoupled from the cache tags because the prefetcher
need not communicate with the cache memory. The prefetcher need not obtain instruc-
tion addresses from the processor core. This is advantageous for the design of distributed
architectures such as the non-uniform cache architecture (NUCA).

As described in this paper, the AMPM prefetch hides the memory access latency for
many benchmarks. The AMPM prefetcher enables us to eliminate the performance bottle-
necks due to the memory latency problem. The basic idea of the AMPM prefetcher has
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recently been proposed [24] in the first data prefetching championship competition (DPC-
1) [20]. In this competition, the prefetcher based on the concept of the AMPM prefetcher
exhibited the highest performance among the finalists. The comparative study reported in
this paper and the result of the DPC-1 shows that the AMPM prefetcher described in this
paper is considered to be the most effective prefetcher for a general workload such as the
SPEC CPU2006 and the NAS Parallel Benchmark.
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