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Abstract

This paper presents a novel prefetching heuristic called Delta Correlating Prediction
Tables (DCPT). DCPT builds upon two previously proposed techniques, RPT prefetching
by Chen and Baer and PC/DC prefetching by Nesbit and Smith. It combines the storage-
efficient table based design of Reference Prediction Tables (RPT) with the high performance
delta correlating design of PC/DC. DCPT substantially reduces the complexity of PC/DC
prefetching by avoiding expensive pointer chasing in the GHB (Global History Buffer) and
recomputation of the delta buffer.

We evaluate this prefetcher on a simulated processor using CMP$im and the SPEC2006
benchmarks. We show that DCPT prefetching can increase performance by up to 3.7X for
single benchmarks, while the geometric mean of speedups across all SPEC2006 benchmarks
is 42% compared to no prefetching.

1. Introduction

Each year, exponentially more transistors can be put into a single integrated circuit [1, 2].
Moore’s law is the empirical observation that the number of transistors that can be placed
on an integrated circuit, with respect to minimum component cost, will double every 24
months. Increased transistor density, in turn, translates into faster computers for consumers.

Up until about the year 2002, processor performance increased by about 55% per year [3].
Since then, limitations on power, ILP and memory latency have slowed the increase in
uniprocessor performance to about 20% per year. Although the capacity of DRAM increases
by about 40% per year, the latency only decreases by about 6-7% per year [4]. This gap
between the processor and DRAM leads to a performance problem known as the “memory
wall” (or “memory gap”) [5]. Numerous techniques have been developed to tolerate or
compensate for this gap, including out-of-order execution, caches and prefetching.

Prefetching is a technique to reduce the number of misses in a cache through predicting
future memory references and fetching the corresponding data before it is referenced by
the CPU. It is especially effective for reducing compulsory misses, as caches only retain
previously referenced data. However, because prefetching is a speculative technique some
prefetched data will not be used, which causes cache pollution and increased bandwidth
usage. Most prefetching heuristics work by finding patterns in the memory access stream
and use this knowledge to predict future accesses.
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In this paper, we present a new prefetching heuristic called Delta Correlating Prediction
Tables (DCPT). DCPT builds upon two previously proposed prefetcher techniques, com-
bining them and refining their ideas to achieve better performance. This heuristic provides
a significant speedup (42% on average for SPEC2006 benchmarks), while only needing 4KB
of storage.

2. Previous Work

Many prefetching heuristics have been proposed in the past. The simplest is the sequential
prefetcher [6], which simply fetches the next block when there is a miss in the cache. An
improvement over this simple heuristic is the tagged sequential prefetcher which adds an
extra bit per cache block (the tag). This bit is set when a block is prefetched into the cache.
If there is a cache hit on a block where this bit is set, then the next cache block is fetched.

The prefetching degree is the number of cache blocks that are fetched on a single prefetch-
ing operation, while the prefetching distance is how far ahead prefetching starts. A sequen-
tial prefetcher with a prefetching degree of 2, and a prefetching distance of 5, would fetch
blocks X+5 and X+6 if there was a miss on block X.

Perez, et al. [7] did a comparative survey in 2004 of many proposed prefetching heuris-
tics and found that tagged sequential prefetching, reference prediction tables (RPT) and
Program Counter/Delta Correlation Prefetching (PC/DC) were the top performers. DCPT
is based on RPT and PC/DC which is covered in detail in section 2.1. and 2.2..

Instruction-based prefetchers have been shown to be very effective [7]. The problem with
instruction-based prefetchers is that they require the load address, which either requires
that the load-address is transmitted along with the memory request or that the prefetcher
is tightly coupled with the processor core. A third option is to not use this information at
all and only use the miss address.

Markov Prefetchers uses a 1-history Markov model in order to predict future refer-
ences [8]. This model uses a graph where each node represents a cache block. Each transi-
tion from node X to node Y is assigned a weight representing the fraction of references to
X that are followed by a reference to Y. When X is accessed, then the outgoing edges from
X are examined. The weighting on the edges can be used to reject or accept prefetching to
the node which the edge points to.

Another approach is to detect when there is a high level of spatial locality in the pro-
gram [9]. When the program has high spatial locality, it is potentially beneficial to fetch
more than a single cache block into the cache. One approach for detecting high spatial
locality is to have a separate tag-array that mimics a cache with larger cache blocks. If
there are more than a set threshold of hits to the same larger virtual cache block, there is
a high probability of high spatial locality and a larger block of data can be prefetched into
the actual cache [9]. Rather than using a separate tag-array, it is possible to use a smaller
table of bit vectors or offsets to represent the same information [10, 11]. By indexing these
patterns with the PC of the load, it is possible to use these bit vectors when that load
misses and prefetch according to the bitvector.

Taking these ideas further, Spatial Memory Streaming (SMS) uses code correlation
across loads [12]. In this approach, an initial trigger access to a spatial region starts record-
ing subsequent accesses to the same spatial region. The blocks that are touched are stored
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PC Last
Address

StateDelta

Figure 1: Format of a Reference Prediction Table entry.

in a bitvector representing the spatial region. The recording stops when the first cache
block from the spatial region is evicted from the primary cache. This pattern can then be
used to prefetch large spatial blocks.

Streams of memory also exhibit temporal locality (i.e., the exact same sequence of
addresses are observed in succession) [13]. This observation is exploited in Spatio-temporal
memory streaming by storing the observed miss address stream in a circular buffer and
using it to detect repeating patterns [13]. This approach is especially useful for programs
using shared memory.

2.1. Reference Prediction Tables

Reference Prediction Tables (RPT) is a strided prefetching heuristic originally proposed
by Chen and Baer in 1995 [14]. Although improvements to the original design have been
proposed [15], the basic design is the same. RPT is related to the earlier Stride Directed
Prefetcher (SDP) [16]. SDP used a table storing the PC of each load and the address of
the last load. By storing this information, SDP could calculate the stride (delta) between
the current and the previous load address. This delta is then used when computing the
next address to prefetch. As the name implies, RPT prefetching is a large table indexed by
the address of the load which caused the miss. Each table entry has the format shown in
Figure 1.

The first time a load instruction causes a miss, a table entry is reserved, possibly evicting
the table entry for an older load instruction. The miss address is then recorded in the last
address field and the state is set to initial. The next time this instruction causes a miss,
last address is subtracted from the current miss address and the result is stored in the delta
(stride) field. Last address is then updated with the new miss address. The entry is now in
the training state. The third time the load instruction misses a new delta is computed. If
this delta matches the one stored in the entry, then there is a strided access pattern. The
prefetcher then uses the delta to calculate which cache block(s) to prefetch.

2.2. PC/DC Prefetching

In 2004, Nesbit and Smith [17] proposed a different approach using a Global History Buffer
(GHB). The structure of the GHB is shown in figure 2. Each cache miss or cache hit to a
tagged (prefetched) cache block is inserted into the GHB in FIFO order. The index table
stores the address of the load instruction and a pointer into the GHB for the last miss issued
by that instruction. Each entry in the GHB has a similar pointer, which points to the next
miss issued by the same instruction. By traversing the pointers, the history of the latest
misses issued by a certain instruction can be obtained.
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Figure 2: Example of a Global History Buffer.

Address: 10 11 20 21 30
Deltas: 1 9 1 9

Figure 3: Example delta stream.

PC/DC prefetching calculates the deltas between successive cache misses and stores
them in a delta-buffer. The history in Figure 2 yields the address stream and corresponding
deltas in Figure 3. The last pair of deltas is (1,9). By searching the delta-stream (corre-
lating), we find this same pair in the beginning. A pattern is found, and prefetching can
begin. The deltas after the pair are then added to the current miss address, and prefetches
are issued for the calculated addresses.

3. Delta-Correlating Prediction Tables

Our prefetch heuristic combines the approaches of both RPT and PC/DC prefetching by
using a table based approach to delta correlation. In DCPT we use a large table indexed
by the address (PC) of the load. Each entry has the format shown in Figure 4. The last
address field works in a similar manner as in RPT prefetching. The n delta fields acts as
a circular buffer, holding the last n deltas observed by this load instruction and the delta
pointer points to the head of this circular buffer.

This main flow is shown in Algorithm 1. In this pseudocode← is used as an assignment
operator and ⇐ is used as the insert into circular buffer operator. To ease notation and in-

4



Hardware Prefetching using Delta-Correlating Prediction Tables
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Figure 4: Format of a Delta Correlating Prediction Table Entry.

Algorithm 1 Main flow

1: procedure DCPT(Load Address PC, Miss address addr)
2: entry ← TableLookUp(PC )
3:

4: if entry.pc 6= PC then
5: entry.pc ← PC
6: entry.lastAddress ← addr
7: entry.deltas[ ] ← ∅
8: entry.lastPrefetch ← 0
9: else if addr - entry.lastAddress 6= 0 then

10: entry.deltas[ ] ⇐ addr - entry.lastAddress
11: entry.lastAddress ← addr
12:

13: candidates[ ] ← DeltaCorrelation(entry)
14: prefetches[ ] ← PrefetchFilter(entry, candidates[ ])
15: IssuePrefetches(prefetches[ ])

crease readability the delta buffer and the inFlight buffer is shown as pure arrays. However,
both are implemented as circular buffers and if they are full, the oldest entry is discarded.

Initially, the PC is used to look up into a table of entries. In our implementation we
have used a fully-associative table, but it is possible to use other organizations as well. If
an entry with the corresponding PC is not found, then a replacement entry is initialized.
This is shown in lines 4-8. If an entry is found, the delta between the current address and
the previous address is computed. The buffer is only updated if the delta is non-zero. The
new delta is inserted into the delta buffer and the last address field is updated. Each delta
is stored as a n bit value. If the value cannot be represented with only n bits, a 0 is stored
in the delta buffer as an indicator of an overflow error.

Delta correlation begins after updating the entry. The pseudocode for delta correlation
is shown in Algorithm 2. The deltas are traversed in reverse order, looking for a match to
the two most recently inserted deltas. If a match is found, the next stage begins. The first
prefetch candidate is generated by adding the delta after the match to the value found in last
address. The next prefetch candidate is generated by adding the next delta to the previous
prefetch candidate. This process is repeated for each of the deltas after the matched pair
including the newly inserted deltas.

In the example in Table 3, the last pair of deltas is (1,9). Searching from the left, we
find this pattern at the beginning. The first delta after the pattern is 1. This delta is then
added to the last address (30), producing a prefetch request for address 31. The next delta
is 9. Adding 9 to 31 yields 40, producing a prefetch request for address 40.
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Algorithm 2 Delta Correlation

1: procedure DeltaCorrelation(DCPT entry entry)
2: candidates[ ] ← ∅
3: d1 ← entry.deltas[last ]
4: d2 ← entry.deltas[last - 1 ]
5: address ← entry.lastAddress
6:

7: for each pair u, v in entry.deltas[ ] do
8: if u = d2 and v = d1 then
9: for each delta remaining in entry.deltas[ ] do

10: address ← address + delta
11: candidates[ ] ⇐ address

12: Return candidates[ ]

Algorithm 3 Prefetch Filtering

1: procedure PrefetchFilter(DCPT entry entry, candidates[ ])
2: prefetches[ ] ← ∅
3: for each candidate in candidates[ ] do
4: if candidate not in inFlight [ ] ∪ MSHRs ∪ Cache then
5: prefetches ← candidate
6: inFlight [ ] ⇐ candidate
7: entry.lastPrefetch ← candidate

8: if candidate = entry.lastPrefetch then
9: prefetches[ ] ← ∅

10: Return prefetches[ ]

The next step in the DCPT flow is prefetch filtering. The pseudocode for this step is
shown in Algorithm 3. If a prefetch candidate matches the value stored in last prefetch,
the content of the prefetch candidate buffer up to this point is discarded. Every prefetch
candidate is looked up in the cache to see if it is already present. If it is not present,
it is checked against the miss status holding registers to see if a demand request for the
same block has already been issued. Third, the candidate is checked against a buffer that
holds other prefetch requests that have not been completed. This buffer can only hold 32
prefetches. If it is full, then prefetch is discarded in FIFO order. Finally, the last prefetch
field is updated with the address of the issued prefetch.

4. Methodology

To evaluate the performance of our prefetcher, we have used the SPEC2006 [18] benchmarks
with the CMP$im simulator [19]. Each benchmark was fast forwarded 40 billion instructions
and then a memory trace of the next 100 million instructions was recorded. The simulated
processor is a 15 stage, 4-wide OoO processor with a 128 entry instruction window with
perfect branch prediction [20]. A maximum of two loads and one store can be issued per
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Figure 5: Speedup compared to no prefetching for benchmarks with high speedups on a
2MB cache with unlimited bandwidth.

clock cycle. The L1 is a 32KB 8-way set associative cache with a latency of 1 cycle. In this
paper we use either a 512KB or a 2MB L2 cache, both 16 way set associative with a 20
cycle latency. Main memory has a 200 cycle latency.

The tagged sequential prefetcher was configured with a prefetching degree of 5, and a
distance of 4. The RPT prefetcher has a 256 entry table, a prefetching degree of 16 and
a distance of 4. To keep within the 32 Kbit limit set by the competition [20], the PC/DC
prefetcher has a 702 entry GHB and a 32 entry delta buffer. Our prefetcher was set up
with a 98 entry table with 19 12-bit deltas. These parameters were found experimentally
to maximize performance on each prefetcher.

5. Results

In Figures 5 and 6, we compare the performance of the 4 prefetchers relative to no prefetch-
ing in a system with unlimited bandwidth. Prefetching has very little impact on performance
(< 2%) for the benchmarks perlbench, gcc, gobmk, sjeng, gamess, namd, dealII, povray and
tonto and are not shown to conserve space. However, they are included in computed the
geometric mean for the benchmark suite. Furthermore, the results have been split into two
graphs so that the benchmarks showing large speedups do not dwarf the others and the
geometric mean of speedups.

Although DCPT and PC/DC prefetching share the same underlying pattern recognition
engine, DCPT is able to capture more of the potential due to a more space-efficient imple-
mentation. Because there is no penalty for issuing several prefetches, sequential prefetching
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Figure 6: Speedup compared to no prefetching for benchmarks with low speedups on a 2MB
cache with unlimited bandwidth.

performs quite well on several benchmarks but is unable to capture the patterns observed
in milc and leslie3d. Overall, DCPT prefetching acheives a geometric mean of speedups of
1.31, while PC/DC achieves 1.29.

Our second experiment, shown in Figures 7 and 8, limits the bandwidth to one request
per 10 clock cycles. In this configuration there is a more significant performance difference
between DCPT (1.38 geometric mean speedup) and PC/DC (1.32 geometric mean speedup),
even though there are several benchmarks where prefetching has no effect. Again there is a
marked difference between DCPT and PC/DC in both milc and leslie3d.

In Figures 9 and 10 we reduce the size of the L2 cache to 512KB. In this case, sequen-
tial prefetching causes a severe slowdown on mcf and astar. However, it is also the top
performer on GemsFDTD. Again, DCPT outperforms the other prefetchers. Surprisingly,
RPT prefetching does not perform very well. This is mainly due to it being too conservative
with respect to bandwidth and at the same time not being able to detect the same access
patterns as PC/DC and DCPT. In this configuration, DCPT achieves a geometric mean
speedup of 1.42 vs 1.33 for PC/DC.

5.1. DCPT Parameters

One of the main differences between DCPT and PC/DC is that DCPT stores deltas, while
PC/DC stores entire addresses in its GHB. Because the deltas are usually quite small,
fewer bits are needed to represent a delta than a full address. In Figure 11, we show
the average portion of deltas that can be represented with a given amount of bits across
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Figure 7: Speedup compared to no prefetching for benchmarks with high speedups on a
2MB cache with limited bandwidth.
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Figure 8: Speedup compared to no prefetching for benchmarks with low speedups on a 2
MB cache with limited bandwidth.
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Figure 9: Speedup compared to no prefetching for benchmarks with high speedups on a
512KB cache with limited bandwidth.
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Figure 10: Speedup compared to no prefetching for benchmarks with low speedups on a
512KB cache with limited bandwidth.
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Figure 11: Coverage and speedup as a function of the number of bits used to represent a
delta.
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Figure 12: Speedup vs. the number of deltas per entry.

all SPEC2006 benchmarks. Additionally, the geometric mean of speedups is plotted as a
function of the number of bits used per delta. In this experiment, we have used a 256 entry
DCPT prefetcher with 16 deltas per entry. Although the coverage steadily increases with
the amount of bits used, speedup has a distinct knee at around 7 bits. Thus, high deltas
are not useful for prefetching.

In Figure 12 we show the geometric mean of speedups as a function of the number of
deltas per table entry. In this experiment, we used 16 bits deltas and 256 table entries. In
effect, increasing the number of deltas increases the prefetch distance of DCPT. Thus, the
optimal choice will be both processor and program dependant. However, there is a clear
trend that performance flattens after about 14 deltas per table entry.
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Figure 14: Number of deltas stored in entry at replacement.

Figure 13 shows the geometric mean of speedups as a function of the number of table
entries. There is a steady performance improvement up to about 100 table entries. After
this point, there is virtually no gain in adding extra entries.

Finally, we examined the average number of deltas stored in each entry at replacement.
Our results are shown in Figure 14. Many of the entries are only used to store the initial
entry and then discarded. If these could be detected, the number of entries required would
be reduced.

6. Discussion

Our proposed prefetching technique is storage efficient. However, the complexity of calcu-
lating each prefetch is high. Each calculation involves searching the entire length of the
deltas for possible matches and then adding the remaining deltas. Thus, each calculation
has a fixed latency as each delta is either used in a comparison or an addition which lends
itself well to pipelining. However, as shown in Figure 15 in most cases the first pair of deltas
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Figure 16: Parallel implementation of the pattern matching step of DCPT.

examined is a match. This is due to the prevalence of simple strided or sequential patterns.
Note that the peak at 19 are misses.

Because of the relative infrequency of L2 misses, several design points are available
depending on the needed performance and available power and area. At one end of the
spectrum, a single comparator and a single adder is sufficient to implement DCPT in addi-
tion to the memory storage. At the other end, the pattern matching step can be performed
in a single cycle, provided enough comparators as shown in Figure 16.

In all our experiments, we unrealistically assumed that the calculation would not take
any time to perform. We experimented with increasing the delay of the calculation from 1 to
100 clock cycles. Although 100 clock cycles is an unrealistic delay, it nevertheless indicates
the maximum impact of delay. Our results are shown in Figure 17. It shows that there was
only a minor (< 1%) performance impact of additional delay. However, this penalty can
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Figure 17: Speedup vs calculation delay.

be offset by increasing the number of deltas per entry - indirectly increasing the prefetch
distance and thus timeliness.

In most cases, the patterns observed are quite simple, as they often repeat themselves
after only a few deltas (see Figure 15). We did some initial experimentation with storing
fewer deltas per entry and extrapolate the pattern from those deltas. However, there was
little to gain from this technique, and we chose to eliminate it from the final design to keep
it simpler. Furthermore, because most memory access patterns are relatively stable, the last
prefetch candidate is often the only one that is not filtered out by the last prefetch entry.
This observation can be exploited by only calculating the last possible prefetch candidate.

In our experiments, we used n bits to represent the delta range, representing the values
between 2n−1 and −2n−1. We observed more positive deltas than negative deltas, leading
us to believe that adding a bias to the delta might be beneficial. We did not explore this
further as the maximum potential of this technique would be equal to adding a single extra
bit to each delta.

7. Conclusion

In this paper, we have presented a new prefetching heuristic called Delta Correlating Pre-
diction Tables (DCPT). DCPT builds upon two previously proposed techniques, Reference
Prediction Tables by Chen and Baer [14] and PC/DC prefetching by Nesbit and Smith [17].
It combines the table based design of RPT and the delta correlating design of PC/DC with
some improvements.

We show that DCPT prefetching can increase performance by up to 3.7X, while the
geometric mean of speedups across all benchmarks is 42%. This is an improvement over
PC/DC prefetching by 27.2% in the 512KB cache configuration with limited bandwidth.
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