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Abstract 

In this paper, we present our design of a high performance prefetcher, which exploits various 

localities in both local cache-miss streams (misses generated from the same instruction) and the 

global cache-miss address stream (the misses from different instructions). Besides the stride and 

context localities that have been exploited in previous work, we identify new data localities and 

incorporate novel prefetching algorithms into our design.  

In this work, we also study the (largely overlooked) importance of eliminating redundant 

prefetches. We use logic to remove local (by the same instruction) redundant prefetches and we 

use a Bloom filter or miss status handling registers (MSHRs) to remove global (by all instructions) 

redundant prefetches. We evaluate three different design points of the proposed architecture, 

trading off performance for complexity and latency efficiency. Our experimental results based on 

a set of SPEC 2006 benchmarks show that the proposed design significantly improves the 

performance (over 1.6X for our highest performance design point) at a small hardware cost  for  

various processor, cache and memory bandwidth configurations.  

1. Introduction 

Data prefetching has been recognized as a promising way to overcome the adverse impact of the 

ever-increasing gap between memory access and processor speeds. Previous proposed prefetchers 

exploit data locality, mainly stride-based [2, 4] and context-based [3] locality, in address streams 

to predict future reference addresses and then to prefetch them into caches before the data are 

required by the processor. However, as reported in a recent study [10], the performance 

improvements of the latest data prefetchers are limited, not much beyond the classical stride-

based stream buffers [4]. In this paper, we propose a high performance data prefetcher, which 

explores both local cache-missing address stream, (i.e. cache-missing addresses generated by the 

same instruction), and global cache-missing address stream, (i.e. addresses generated by all loads 

and stores), for regular address patterns. Besides stride and context locality, this prefetcher 

incorporates new localities that have not been exploited in previous works.  

Furthermore, we highlight the importance of eliminating redundant prefetches. We propose to 

use logic to eliminate local (from the same instruction) redundant prefetches and a Bloom filter or 
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miss status handling registers (MSHRs) to remove global (by all instructions) redundant 

prefetches. Our experimental results based on a set of SPEC 2006 benchmarks show that our 

design achieves significant performance improvements (over 1.6X for our highest performance 

design point) for various processor configurations.  

In summary, the main contributions of this paper include: 

• A high-performance data prefetcher that exploits various data localities in both local and 

global cache missing address streams.  

• New data localities including global strides, most common local strides, and local 

exponential patterns.  

• Recognizing the importance of redundant prefetches, which has been largely overlooked 

in previous works.  

• Advocating for L1-cache data prefetchers despite the conventional wisdom that favors 

L2-cache prefetchers.  

• Evaluating three different design points including a simple, complexity and latency 

efficient design and two more aggressive but more complex designs for higher 

performance.  

• An adaptive scheme to turn off the prefetcher when it is no longer beneficial. This 

scheme is mainly used a safety net to avoid excessive and useless prefetches.  

The remainder of the paper is organized as follows. In Section 2 we discuss related works and 

their limitations. In Section 3, we present our newly identified data localities. Our data prefetcher 

architecture as well as the storage cost is presented in Section 4. The experimental methodology 

and the results are discussed in Sections 5 and 6, respectively.  Finally, Section 7 concludes the 

paper.  

2. Related Work  

Due to its importance, data prefetching has been an active research topic in processor design. 

Next-line prefetching and its improvement, tagged prefetching [12] are classical ways to leverage 

spatial locality in data streams. Stride-based prefetching schemes [2, 4] detect the stride pattern 

(a, a+d, a+2d, …) in the address stream and issue prefetches based on the dynamically captured 

strides. Context prefetching or correlation prefetching [3] detects the correlation between cache 

miss addresses (e.g., a, b, a, b, …) and issues prefetches based on the previously recorded 

correlated addresses. Because of the large address range, it usually requires a large buffer to 

capture context correlation in address streams. One effective improvement over address 

correlation is to capture correlation in delta (i.e., difference between consecutive addresses). This 

way, both stride and correlation locality can be detected effectively. Delta correlation was 

proposed for TLB prefetching [5] and adapted for cache prefetching [7, 8].  

The global history buffer (GHB) [7] provides an efficient way to maintain the most recent 

cache misses and can be used to implement flexible prefetching algorithms. The structure of a 

generic GHB prefetcher is shown in Figure 1. The GHB is organized as a circular FIFO buffer 

with each entry maintaining an address and a pointer. The addresses in GHB are managed as 

many linked lists and the index table provides a pointer to the head of each linked list. Dependent 

upon the key to the index table, various histories-of-interest can be reconstructed from the GHB. 

For example, if the key is the program counter (PC), the local miss address streams can be 

reconstructed from the global history. A recent study [10] shows that the GHB prefetcher 

achieves the best performance among the ten prefetching mechanisms in the study.  
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Figure 1: Global history buffer prefetching [7, 8]. 

Although GHB prefetching has many desirable features, it has two major weaknesses. (a) 

Since the GHB maintains the global miss history and is shared by all misses, it can be resource 

inefficient when dealing with a burst of misses from a few static instructions. For example, a few 

frequently missed loads/stores with perfect stride patterns may pollute all the GHB entries 

although few entries are needed to detect the strides. (b) It requires sequential operations to 

traverse a linked list to reconstruct an address history of interest from the GHB. Although such 

latency penalty may not be an issue for an L2-cache prefetcher due to the high L2-cache miss 

latency, such sequential operations make it less attractive for an L1-cache prefetcher. In this 

work, we propose to combine GHB with local delta buffers (LDBs) to achieve both fast access 

and high resource efficiency (see Section 4).  

3. Novel Data Localities in Address Streams 

Following the convention used in value prediction research [6, 13], we use local history to refer to 

the addresses generated by dynamic instances of the same instruction and global history to refer 

to the addresses generated by all instructions. As discussed in Section 2, existing works on data 

prefetching have exploited stride and/or context locality in local and/or global address streams.  

In this paper, the following new data localities have been identified.  

• Global Stride  

This locality exists, when there is a constant stride between addresses of two different 

instructions. For example, in the following global address stream: X, X+d… Y, Y+d… where (X, Y 

…) is the local address history from an instruction I and (X+d, Y+d …) is the local address history 

of an instruction J. In this case, even if there is no exploitable pattern in the local address histories 

of I or J, the address stream of the instruction I can be used to prefetch data for instruction J once 

the global stride is detected.  

GHB provides an efficient way to detect the global stride locality. Using the PC as a key, 

each linked list node comprises one local address history. The global strides can be computed as 

the difference between each entry in the linked list and the entry next to it, as shown in Figure 2. 

We can also extend global stride detection beyond neighboring entries in the link list.  
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Figure 2: Computing global strides using GHB.  

• Most Common Stride  

This locality appears when a constant stride pattern is disrupted from time to time with some 

irregular addresses. For example, in the following delta address (the difference between two 

consecutive addresses) stream: d, x, d, y, d, z… although there exists a common stride d, it cannot 

be detected with existing stride or context-based approaches. In our experiments, we observed 

such locality in several benchmarks and we devise a simple way to detect it in local address 

streams (see Section 4). In [9], Dimitrov and Zhou propose to prefetch the minimum delta from 

the delta buffer, rather than the most common one as we propose. The downside of the most 

common stride locality is that we can use it to make only a single prefetch, since the stride is 

frequently disrupted as shown in the above example.  

• Exponential  

Again, considering the delta address stream, the exponential locality exists in the following 

case: d, 2d, 4d, 8d, 16d, etc. Such locality is a direct result of the code that we observed in the 

benchmark mcf. In the function replace_weaker_arc, the indices of some array accesses are 

generated using the code “cmp *= 2” and then the array is accessed using “if(new[cmp-1].flow < 

new[cmp].flow)”.  

Although it is not difficult to detect such locality, we found that the exponential pattern seems 

to be a rare case except in mcf. Even in mcf, the pattern varies due to control flow and the delta 

stream becomes d, 2d, 4d+m, 8d+m, etc. Therefore, we exclude the exponential locality in our 

data prefetcher design.   

4. Proposed Data Prefetcher  

4.1.  Architecture 

Our proposed prefetcher exploits data localities in both local and global address streams. Unlike 

the GHB prefetcher, we use a structure named local delta buffer (LDB) for instructions with 

strong locality in their local histories. We use a GHB structure in order to capture the global 

address stream (for detecting global stride) and also to store instructions which are not classified 

as having strong locality. The overall structure of our proposed prefetcher is shown in Figure 3. 

Next, we discuss each of the key components in detail.  

 

X 

Global History Buffer 

G_delta 

_ G_delta 

Match? 

X +d  

Y 

Y +d  

_ 



COMBINING LOCAL AND GLOBAL HISTORY FOR HIGH PERFORMANCE DATA PREFETCHING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 

 

 

Figure 3: The structure of the proposed data prefetcher.  

• Index Table 

Similar to a GHB prefetcher, the index table in our design is a cache-like structure indexed by 

the PC. Each entry in the index table has three fields: the tag, least recently used (LRU) counter, 

and index. If the index field is greater than the number of entries (N) in the GHB, the value (index 

– N) is used to access one of the LDBs. Otherwise, the index field points to an entry in the GHB, 

which is the beginning of the linked list of the addresses generated by the same instruction with 

the corresponding tag.  

• Global History Buffer (GHB) 

In our design, the GHB operates in the same way as in [7, 8] except that not all the miss 

addresses are sent to the GHB. If an index field in the index table points to one LDB, the miss 

address will be sent to the LDB accordingly. Since the addresses in the GHB are linked using the 

PC, each linked list is a local address stream.  

• Prefetch Function 

The prefetch function in our design implements the following prefetching algorithms.  

1) Delta Correlation 

To capture delta correlation, a delta buffer is included in the prefetch function, which keeps 

the delta information when a linked list is traversed in the GHB. Then, a match of two 

consecutive deltas is searched in the delta buffer using the same approach as in [8]. If there is a 

match, 8 prefetches will be issued according to the delta pattern. As consecutive delta matches 

indicate strong locality, the delta buffer is copied to one of the LDBs (the least recently used one). 

The index field is then updated accordingly so that subsequent addresses from the same 

instruction will be sent directly to the LDB.  

2) Simple Delta Correlation 

If there is no match of two consecutive deltas found in the delta buffer, then we search for a 

match of only one delta. Since we do not have much confidence in prefetches generated by 

matching a single delta, we issue only 4 prefetches instead of 8. The prefetches are generated in a 

similar fashion as in [8]. For example, if the delta buffer contains (a, x, y, z, a, m, n …) with a 

being the latest delta and Addr being the last address, the prefetch requests will be (Addr + z), 

(Addr + z + y), (Addr + z + y + x), and (Addr + z + y + x + a).  

3) Global Stride 

When the linked list is traversed in the GHB, the global strides are computed as described in 

Section 3. If a match found, prefetches can be issued accordingly.  
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4) Most Common Stride and Next-Line Prefetch 

This function applies to the delta buffer originating from the LDBs. If there is no delta 

correlation found in the local history, next-line prefetch and most common stride (see the LDB 

discussion next) are used to generate two prefetches.  

• Local Delta Buffer 

An LDB is a FIFO structure and contains a local delta address stream. It also has a PC field 

as the tag and an LRU counter for replacement. The last address is maintained to calculate the 

latest delta. The prefetch functions are the same as those used for GHB except for Global Stride, 

which cannot be computed using an LDB because only the local address stream is stored in an 

LDB. Since an LDB contains the local address stream, it does not require a link-list traversal as in 

the GHB to compute the deltas. The “last matched stride” field is updated when there is a match 

found during delta and simple delta correlation computation. It implies that the stored stride 

appears at least twice in the delta buffer. This field is designed to approximate the most common 

stride discussed in Section 3 and is used only when there is no delta correlation.  

In our proposed design, multiple LDBs are used and the idea is to allocate an LDB for each of 

the most frequently missed load or store instructions. This way, each miss address of those 

instructions will go to LDB directly without polluting the GHB. In addition, the latency of 

accessing the GHB sequentially (i.e., linked list traversal) is eliminated for prompt prefetching 

request generation in the common cases.  

4.2. Filtering of Redundant Prefetches 

Our proposed prefetcher exploits data localities in both local and global address streams. Our 

prefetcher prefetches data into L1 data cache (D-cache). The reasons are two-fold. The first is that 

L1 cache miss address stream provides much stronger locality than L2 miss addresses, which 

translates into higher prefetch accuracy. The second is that prefetching data into L1 D-cache can 

eliminate the L2 cache access latency. We quantify the impact of prefetching into the L1 cache 

vs. prefetching into the L2 cache in Section 5.  

When used as L1-cache prefetcher, each L1 miss (also L1 hits if the block is prefetched) will 

access the prefetcher and potentially invoke prefetch requests. The requests from different misses 

may overlap with each other and result in wasted bandwidth. Redundant prefetches may be 

triggered by the same instruction, which repeatedly issues the full prefetch degree upon each 

prefetcher access (prefetch a,b,c,d  then prefetch b,c,d,e  etc.). Redundant prefetches may also be 

triggered by a different instruction, which accesses the same set of cache lines. Thus, even if 

individual instructions do not issue any redundant prefetches, the prefetches may be redundant 

with respect to those issued by other instructions.  Therefore, a filtering mechanism is necessary 

especially when the bandwidth support is limited.  

Two different mechanisms are used in our proposed design. First, we use simple logic to 

eliminate some local redundant prefetches. Second, we employ a set of prefetch MSHRs or a 

bloom filter [1] to eliminate the remaining redundant ones. The simple logic here targets at both 

constant stride and repeating context patterns. One “confidence” bit is added to each LDB. If a 

constant stride or a strong delta correlation is detected (meaning 3 consecutive matches in delta 

correlation), this bit is set. If this bit is set, subsequent accesses to the LDB will only issue one 

unique prefetch request. For example, an LDB detects a constant stride and issues prefetches 

(a+d, a+2d, a+3d … a+8d) where a is the current miss address. After the confidence bit is set, 

subsequent accesses (e.g, address b=a+d) will result in a single prefetch b+8d (=a+9d) rather 

than (b+d, b+2d …). Each prefetch address, which passes the logic filter, probes the MSHRs or 



COMBINING LOCAL AND GLOBAL HISTORY FOR HIGH PERFORMANCE DATA PREFETCHING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 

 

the Bloom filter. If there is a MSHR or Bloom filter hit, it is likely that we have already issued 

this prefetch, and we discard it. On a MSHR or Bloom filter miss, we issue the prefetch. The 

Bloom filter may generate false-positive matches, and those will result in an incorrectly dropped 

prefetch. To limit false-positive matches, we reset the Bloom filter periodically (every n/4 filter 

accesses, where n is the number of filter entries). The MSHRs will not result in false positive 

matches, however MSHRs are much more expensive to implement.  

4.3. Adaptive Control Prefetching 

Besides the structures described above, we also use set dueling [11] to monitor the effectiveness 

of our prefetcher. In a training phase, we turn off prefetching if the prefetching block address 

satisfies the condition: (block addr % 4 == 2). Then, we periodically (every 1 million cycles) 

compare the miss rate from these lines that are not affected by the prefetcher with the miss rate 

from other lines to see whether the prefetcher is beneficial. If not, we can turn off the prefetcher.  

4.4. Design Space Exploration 

In this work, we propose and evaluate three different design points of the architecture described 

in Section 4.1 and Section 4.2. The first design point (GHB-LDB-1) is our highest performance 

design. This design aggressively exploits all the localities as described above. This design also 

uses MSHRs to remove redundant prefetches without any false-positive matches (see Section 

4.3). 

The second design point is similar to the first, however it is scaled down in terms of storage 

requirements (a smaller GHB table is used) and complexity (Bloom filter is used instead of 

MSHRs). We call this design point GHB-LDB-2, and the purpose is to demonstrate that even 

with a significantly smaller storage budget, we can still achieve very high performance.  

Our third design point is meant to be the most complexity and latency efficient. It uses a 

single-level prefetch table indexed by load/store PC. Each entry in the prefetch table is a fixed 

size, local delta buffer (LDB) as described in Section 4.1. Thus each table entry maintains the last 

several deltas (strides) for a given load/store instruction as well as the last miss address for 

computing the new delta. Since the LDB-only design does not maintain global history 

information, it cannot prefetch global strides. However, the LDB prefetcher can detect the delta 

correlation, simple delta correlation and most common stride patterns as discussed in Section 4.1. 

In this design, upon a prefetch table hit, the prefetch function will search for delta and simple 

delta correlation. If no match is found, then a next line prefetch is generated. This design is 

simple and latency efficient, because it does not require a linked-list traversal or other complex 

logic. It also eliminates the problem with a GHB based design, where a burst of misses from only 

a couple of load/store instructions may pollute the entire GHB.  Despite its simple design, the 

LDB-only prefetcher is able to achieve good speedups when prefetching for the L1-cache, as 

shown in our experiments in Section 5.  

4.5. Storage Cost 

For the first JILP data prefetching competition [14] (DPC-1), we submitted the three design 

points: GHB-LDB-1, GHB-LDB-2 and LDB-only as described above. The parameters and the 

storage costs of all three versions are summarized in Table 1. In both GHB-LDB versions, we use 

a 256-entry 8-way set-associative index table. Assuming 32-bit processors, it requires 256 * (27 

bit tag + 3 bit LRU + 8 bit index to GHB) = 9728 bits. For the GHB, each entry takes a 32-bit 

address and a log2(N) bit pointer, where N is the number of entries in the GHB.  
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Each LDB has a 7-entry delta buffer (the eighth delta is calculated using the current address 

and the ‘last address’ field) and each delta is 32 bits. Therefore, each LDB takes (7*32 + 32 bit 

PC + 32 bit last address + 32 bit ‘last matched stride’ + log2(M) bit LRU) where M is the number 

of LDBs in the design. The prefetch function has a 32-entry delta buffer (32*32) and three 

temporal registers (32*3) for delta matching, a total of 1120 bits.  

In the LDB-only version we use a 64-entry 8-way table. Each table entry is an LDB, thus the 

storage is the same as above. The only difference is that we use 24 bit deltas.  

The prefetch MSHRs maintain outstanding prefetches at the cache block level. Since the 

block size is 64 bytes, each MSHR costs (26 – index + LRU bits).  

The adaptive control of the prefetcher requires several counters. We collect miss rates (3 

counters for L1, L2, and the region in L2 not affected by prefetching) every 1 million cycles. We 

also use prefetch bits to get the number of successful prefetches in L1 cache. A total of 100 bits 

are allocated for those counters. The LDB-only prefetcher does not use the adaptive control in our 

experiments.  

Table 1: A summary of storage cost of three submitted versions.  

Storage 

Cost 

GHB-LDB-1 GHB-LDB-2 LDB-only 

Index 

Table 

256-entry 8-way 9728 

bits 

256-entry 8-way 9728 bits 64-entry 8-way 

GHB 192 entry 192 * (32+8) 

= 7680 bits 

128 entry 128 * (32+7) = 

4992 bits 

N/A 

Prefetch 

Func. 

1120 bits 1120 bits 1120 bits 

Prefetch 

MSHR 

256-entry 8-way 

256*(21+3)=6144 bits 

N/A N/A 

Bloom 

filter 

N/A 2048 + 8-bit reset counter 4096 + 9-bit reset 

counter 

LDBs 16 LDBs 

16*(7*32+32+32+32+5)

=5200 bits 

16 LDBs 

16*(7*32+32+32+32+4+1)

=5200 bits 

64 LDBs 

64*(7*24+32+32+3+1)=

15104 bits 

Counters 100 bits 100 bits N/A 

Total 29972 bits (3.7kB) 23196 bits (2.9kB) 20329 bits (2kB) 

5. Experimental Methodology  

We model the proposed prefetcher using the simulation framework for the 1st JILP data 

prefetching contest (DPC-1) [14]. We used gcc 4.1.2 on a 32-bit X86 machine to compile a set of 

memory intensive SPEC 2006 benchmarks. For each benchmark, the trace was generated by 

skipping the first 40 billion instructions and recording the next 100 million instructions. The 

performance improvements (compared to no prefetching) are measured for three processor 

configurations according to the rules of DPC-1 (Table 2).  
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Table 2: Configurations used for evaluation as specified by the rules of DPC-1.  

 L2 size L1 and L2 queue bandwidth 

Config1 2 MB Unlimited 

Config2 2 MB A maximum of 1 request per cycle from the L1 to the L2, and a 

maximum of 1 request every 10 cycles from the L2 to memory 

Config3 512 KB A maximum of 1 request per cycle from the L1 to the L2, and a 

maximum of 1 request every 10 cycles from the L2 to memory 

6. Experimental Results  

Our experimental results are shown in Table 3, Table 4 and Table 5 for the three submitted design 

points. Besides remarkable performance improvements, several interesting observations can be 

made from our experiments. First, the simple LDB approach is able to capture most of the 

performance benefit of the more complex GHB-LDB schemes. Thus capturing local delta 

correlations, prefetching for the L1 cache and filtering redundant prefetches are the major 

contributors to performance improvement of our proposed design. On the other hand, we found 

that for the GHB-LDB design around 90% of all the prefetches are issued from LDBs instead of 

the GHB. Since LDBs eliminate the need to traverse the linked list in GHB, the latency of 

prefetch generation is effectively reduced. Second, a relatively small number of LDBs (16) is 

enough for either version to achieve the most performance enhancement. In our submissions, we 

scale the GHB-LDB-1 to use a larger storage budget.  

Table 3: The speedups from prefetcher (GHB-LDB-1). 

Speedup bzip2 lbm  mcf milc omnetpp soplex xalan Gmean 

Config1 1.07 2.89 2.65 1.97 1.13 1.54 0.99 1.61 

Config2 1.08 2.98 1.90 2.83 1.10 1.46 0.97 1.60 

Config3 1.02 2.98 1.88 2.83 1.11 1.48 1.37 1.67 

Table 4: The speedups from prefetcher (GHB-LDB-2). 

Speedup bzip2 lbm  mcf milc omnetpp soplex xalan Gmean 

Config1 1.07 2.88 2.53 1.95 1.17 1.48 0.97 1.59 

Config2 1.08 2.77 1.84 2.78 1.12 1.47 0.94 1.57 

Config3 1.01 2.80 1.83 2.78 1.13 1.51 1.37 1.65 

Table 5: The speedups from prefetcher (LDB). 

Speedup bzip2 lbm  mcf milc omnetpp soplex xalan Gmean 

Config1 1.07 2.83 2.38 1.91 1.13 1.47 0.89 1.54 

Config2 1.08 2.92 1.85 2.48 1.09 1.47 0.85 1.53 

Config3 1.04 2.91 1.84 2.48 1.10 1.55 1.30 1.63 
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In Table 6 for comparison, we show the performance of the original GHB proposal [7] for a 

192 entry GHB buffer. We implement the GHB to the best of our knowledge. We detect only 

delta context strides (match of last two deltas) as described in the original paper and make 

prefetches into the L1 cache. We also do not filter redundant prefetches. We can see that while 

GHB performs reasonably well for configuration 1, when the bandwidth is limited, it suffers a lot 

due to redundant prefetches and results in performance slowdowns in some cases such as lbm and 

mcf.  

Table 6: Original GHB approach, prefetching into the L1-Cache and no filtering of redundant 

prefetches.  

Speedup bzip2 lbm  mcf milc omnetpp soplex xalan Gmean 

Config1 1.06 2.88 2.36 1.82 1.10 1.29 0.83 1.48 

Config2 1.06 0.48 0.96 1.44 1.07 1.10 0.77 0.94 

Config3 1.03 0.48 0.96 1.44 1.08 1.15 1.11 0.99 

 

In the next set of experiments, we evaluate the impact of prefetching into the L1 cache (vs. 

the L2 cache) and the impact of eliminating redundant prefetches. We also compare our approach 

to the original GHB proposal (GHB-orig). We have enhanced GHB-orig with MSHRs for 

eliminating redundant prefetches so that we can isolate the performance effects of L1 vs. L2 

prefetching. In this set of experiments, we also disable our adaptive scheme which automatically 

turns the prefetcher ON or OFF, so that it does not interfere with the understanding of our results. 

For clarity, all the experimental results presented use our best performing configuration GHB-

LDB-1. Our other configurations, GHB-LDB-2 and LDB, exhibit similar trends.  

As discussed in Section 4.3, in contrast to conventional wisdom, we advocate prefetching into 

the L1 data cache, instead of at higher levels of the cache hierarchy. Figure 4 compares the 

speedup achieved when prefetching into the L2 cache instead of the L1 cache, for the unlimited 

bandwidth processor configuration 1. We can see that prefetching into the L1 cache achieves 

higher speedup (Gmean of 1.62) than prefetching into the L2 cache (Gmean of 1.44) due to the 

much more accurate address stream visible at the L1 cache level. The same trend is observed for 

the original GHB approach as well, where prefetching into the L1 cache achieves a Gmean 

speedup of 1.50 compared to Gmean speedup of 1.19 when prefetching into the L2 cache. The 

only exception to this trend is the xalan benchmark, where GHB-orig prefetching for the L2 

cache performs better than prefetching for the L1 cache. The reason is that prefetching is actually 

harmful to xalan resulting in a slowdown. L1 prefetching generates more prefetches, and is thus 

more harmful than prefetching at the L2 level.  

Figure 5 compares the performance of L1 vs. L2 prefetching for the limited bandwidth 

configuration 3. From the first two bars of the figure, we can see that prefetching for the L1 (vs. 

L2) cache is even more beneficial when the bandwidth is limited, due to the improved accuracy 

of prefetches at the L1 level. The trend for GHB-orig (third and forth bar) is similar to that in the 

unlimited bandwidth configuration Figure 4, since we use less aggressive prefetching algorithms 

(we only use delta correlation).  
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Figure 4: Comparing the performance of L2 vs. L1 prefetching for processor configuration 1. 

 

Figure 5: Comparing the performance of L2 vs. L1 prefetching for configuration 3.  

In our next experiment, we study the impact of eliminating redundant prefetches, and our 

experimental results are presented in Figure 6. In the figure, we evaluate the different strategies 

that we have proposed for eliminating redundant prefetches, such as eliminating local redundant 

prefetches using logic and eliminating global redundant prefetches using a Bloom filter or 

MSHRs. For comparison, we also augmented the original GHB approach with MSHRs. The last 

two bars in the figure compare the performance of the original GHB approach with and without 

eliminating redundant prefetches. We present our results for the limited bandwidth configuration 

3, since this configuration is the most vulnerable to redundant prefetches. We observed similar 

trends for configuration 2, while the unlimited bandwidth configuration 1 was largely unaffected 

by redundant prefetches. From Figure 6, we can make three observations. First, we can see that 

without any filtering of redundant prefetches (first bar), the usefulness of the prefetcher is 

significantly hindered. We achieve modest speedups on average (only 1.12 Gmean speedup) and 

incurring performance slowdowns in some applications such as lbm, mcf, and bzip2. Second, 

filtering of both local and global redundant prefetches is important (second and third bar), while 

MSHR filtering (fourth bar) provides the highest performance due to its accuracy. Third, the 

original GHB approach exhibits similar trends and achieves significant performance 

improvements when redundant prefetches are eliminated (Gmean speedup of 0.99 vs.  Gmean 

speedup of 1.45).  
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Figure 6: Impact of filtering of redundant prefetches (processor configuration 3).  

We also studied the benefits of the novel localities, global stride and most common stride, 

which we introduced. Our experimental results show that the global stride locality has very 

limited performance impact, providing small benefit to omnetpp in processor configuration 3 

(speedup increases from 1.10 to 1.11 with global stride) while hurting in some cases such as milc 

in configuration 3 (decreasing speedup from 2.87 to 2.83). On average, global stride reduces the 

speedup of configuration 3 from 1.68 to 1.67, while the average performance in the other 

configurations remains unchanged. There are a couple of reasons why we observe such limited 

impact from global stride. The first reason is that majority of the load/store instructions (around 

90%) access the LDBs and not the GHB, and thus they do not have access to the global history 

information and do not make global stride prefetches.  Even when the GHB is accessed, our 

implementation gives priority to other prefetching schemes, such as delta correlation and simple 

delta correlation (as described in Section 4.1), thus we make relatively few global stride 

prefetches. The second reason is that in many cases that we studied, global stride is not effective 

in hiding memory latency. This is because the instructions exhibiting the global stride locality are 

neighboring instructions and are executed back-to-back.  

Our most common stride locality also has relatively small impacts on overall performance 

(Gmean speedup increases for configuration 3 from 1.66 to 1.67 with most common stride). The 

small performance impact is due to the fact that we give higher priority to delta correlation and 

simple delta correlation prefetches. If we issue a most common stride prefetch, it is always a 

single prefetch as mentioned in Section 4.1.  

Adaptive control actually hurts performance slightly (Gmean speedup drops from 1.69 to 

1.67 for configuration 3) but serves as a safety net in the cases where prefetching would hurt 

performance. The slight performance degradation is because some beneficial prefetching 

opportunities are missed due to set sampling in the training phase.  

Lastly, we note that the compiler, which is used to compile the SPEC benchmarks and 

generate the traces, plays an important role. When changing to another gcc version (4.2.3), the 

performance varies significantly (both with and without prefetching) compared to the results 

using gcc 4.1.2. Nevertheless, our proposed prefetcher still achieves significant speedups (1.5-

1.7X) in this case.  
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7. Conclusions 

In this paper, we present our design for an L1 data cache prefetcher. It exploits various data 

localities in both local and global address histories and achieves remarkable performance 

improvements. In this work, we also emphasize the importance of removing redundant prefetches 

to reduce bandwidth demand and advocate prefetching into L1 cache instead of higher level 

caches.  
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