
Journal of Instruction-Level Parallelism 10 (2008) 1-24 Submitted 2/07; published 6/08
Simple Penalty-Sensitive Cache Replacement Policies

Jaeheon Jeong JAEHEON.JEONG@INTEL.COM
Intel Corporation
Digital Enterprise Group
Hillsboro, OR97214, USA

Per Stenström PERS@CE.CHALMERS.SE
Department of Computer Engineering
Chalmers University of Technology
SE-412 96 Göteborg, Sweden

Michel Dubois DUBOIS@PARIS.USC.EDU
Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, CA90089-2562, USA

Abstract

Classic cache replacement policies assume that miss costs are uniform. However, the correla-
tion between miss rate and cache performance is not as straightforward as it used to be. Ultimately,
the true performance cost of a miss should be its access penalty, i.e. the actual processing band-
width lost because of the miss. Contrary to loads, the penalty of stores is mostly hidden in modern
processors. To take advantage of this observation, we propose a simple scheme to replace load
misses by store misses. We extend LRU (Least Recently Used) to reduce the aggregate miss pen-
alty instead of the miss count. The new policy is called PS-LRU (Penalty-Sensitive LRU) and is
deployed throughout most of this paper. PS-LRU systematically replaces first a block predicted to
be accessed with a store next. This policy minimizes the number of load misses to the detriment of
store misses.

One key issue in this policy is to predict the next access type to a block, so that higher replace-
ment priority is given to blocks that will be accessed next with a store. We introduce and evaluate
various prediction schemes based on instructions and broadly inspired from branch predictors. To
guide the design we run extensive trace-driven simulations on eight Spec95 benchmarks with a
wide range of cache configurations and observe that PS-LRU yield positive load miss improve-
ments over classic LRU across most the benchmarks and cache configurations. In some cases the
improvements are very large.

Although the total number of load misses is minimized under our simple policy, the number of
store misses and the amount of memory traffic both increase. Moreover store misses are not totally
“free”. To evaluate this trade-off, we apply DCL and ACL (two previously proposed cost-sensitive
LRU policies) to the problem of load/store miss penalty. These algorithms are more competitive
than PS-LRU. Both DCL and ACL provide attractive trade-offs in which less load misses are saved
than in PS-LRU, but the store miss traffic is reduced.

1. Introduction

To sustain the performance growth of modern processors, the hit rate, access time and bandwidth
An early version of this manuscript appeared in ACM Computing Frontiers 2006.

JEONG, STENSTRÖM AND DUBOIS
of caches must be improved. The common approach to improve the cache hit rate is to increase the
cache size and associativity. To improve the trade-off between the hit rate and access time, caches
are often organized in hierarchies. These hierarchies work well when the first-level cache has a
good hit rate. Otherwise the cost of handling misses may offset the gains. Fortunately, the tight
integration of the processor with its caches enables sophisticated hardware schemes to better man-
age the caches. Cache related activities inside the processor are easily monitored and the informa-
tion gathered can be used to optimize cache behavior. If the added hardware cost and complexity
are reasonable, such approaches become feasible and cost-effective.

Cache replacement algorithms widely used in modern processors are LRU (Least Recently
Used), Partial LRU (PLRU), and Random [19, 20]. These algorithms aim to reduce the aggregate
miss count, and their cost model is that all misses have the same performance effect. However the
correlation between miss rate and cache performance in modern processors is not as straightfor-
ward as it used to be. A precise measure of the cost of a miss is the penalty paid when some pro-
cessor resource is stalled waiting for the completion of a memory access. More effective cache
replacement policies should be sensitive to the penalty of a miss because misses are different, in
the sense that their performance impact can vary widely. One problem is that the miss penalty is
very dynamic and variable due to non-blocking caches and dynamic instruction scheduling. Thus
the accurate measurement and prediction of memory access penalties are both very hard problems
[1, 17, 21].

One simple approach is to take advantage of the penalty difference between a store miss and a
load miss. In a processor with a properly designed and enabled store buffer, the penalty of stores is
mostly hidden because a store retires as soon as it reaches the top of the active list, whereas, in the
case of loads, the processor needs the value back before the load can retire. It is therefore advanta-
geous in a system to replace load misses with store misses, by giving higher replacement priority
to cache blocks that are accessed next by a store instruction. In the process the total miss rate may
be increased, but we expect that the aggregate penalty of all misses will be less. We call such
replacement policies Penalty-Sensitive replacement policies. Although any replacement policy
such as Random and Pseudo LRU can be sensitized to penalty, we focus in this paper on an exten-
sion to LRU called PS-LRU (Penalty-Sensitive LRU). In this policy, blocks that will be accessed
next by a store are replaced first, regardless of their position in the LRU stack. This is equivalent to
assuming a cost model in which the penalty of stores is zero and the penalty of loads is one, and to
minimizing the aggregate penalty of all misses.

To reap the benefits of this idea, we need to effectively predict the next access type (load or
store) for every block in the set at the time of replacement. This can be done statically through pro-
filing at compile-time, or dynamically by maintaining Access Type Predictors (ATPs). ATPs have
other applications besides penalty-sensitive cache replacement, but, in this paper, we concentrate
on cache replacements. We introduce and evaluate various prediction schemes based on instruc-
tions and broadly inspired from branch predictors. To guide the design we run extensive trace-
driven simulations on eight Spec95 benchmarks with a wide range of cache configurations and
observe that PS-LRU yield positive load miss improvements over classic LRU across most the
benchmarks and cache configurations. In some cases the improvements are very large.

Although the total number of load misses is minimized under our simple policy, the number of
store misses and the amount of memory traffic both increase. Moreover store misses are not totally
“free”. To evaluate this trade-off, we apply DCL and ACL (two previously proposed cost-sensitive
LRU policies) to the problem of load/store miss penalty. These algorithms are more competitive
than PS-LRU. Both DCL and ACL provide attractive trade-offs in which less load misses are
2

SIMPLE PENALTY-SENSITIVE CACHE REPLACEMENT POLICIES
saved, but the store miss traffic is reduced.

The rest of the paper is organized as follows. In Section 2, we introduce our simple penalty-
sensitive extension to LRU called PS-LRU and also review the DCL and the ACL policies. Sec-
tion 3 describes our architecture assumptions and the evaluation methodology. In Section 4 we
evaluate penalty-sensitive replacement algorithms when the penalty is 100% accurately predicted.
In Sections 5, 6, and 7 we develop and evaluate more realistic policies. Section 9 compares PS-
LRU and DCL/ACL. Finally we overview previous work in Section 9 and conclude in Section 10.

2. Penalty-sensitive Cache Replacement Policies

Cost-sensitive replacement policies were designed to take into account both locality and miss cost
in the replacement decision [7, 9]. There are many possible approaches to account for non-uniform
miss costs in the management of caches. Here, we overview the various policies exploited in this
paper.

2.1. Basic Cost-sensitive Policy

One simple approach consists in always victimizing the lower-cost block with the least temporal
locality (lowest in the LRU stack). The simplest case is when we have two types of blocks so that
misses of one type has cost zero and misses of the other type have a non-zero constant cost, and
the cost ratio is infinite. In this case, blocks with zero cost are always replaced first (since they
don’t add to cost) until the only blocks left in the set have nonzero cost.

The policy deployed throughout most of this paper follows this approach. Each store miss is
assigned a cost of zero and each load miss is assigned a cost of one. We divide the blocks in each
cache set into two subsets: store subset and load subset. The store subset contains the blocks that
will be accessed next by a store whereas the load subset contains the blocks that will be accessed
next by a load. If the store subset is empty, the victim is selected by LRU, otherwise LRU is used
to select a victim among the blocks in the store subset. This new policy is called PS-LRU (Penalty-

Sensitive LRU)1.

Although very simple, this approach uses cost as the dominant factor for replacement and
tends to keep nonzero cost blocks in the set for inordinate amount of time, which may increase the
miss rate on zero cost blocks and thus contribute to added memory traffic.

2.2. ACL and DCL

Towards the end of the paper we will evaluate the effectiveness of this basic strategy by compar-
ing it with previous strategies in which both locality and cost are constantly in competition for
each replacement decision [8]. More specifically, we use two replacement strategies previously
proposed [8, 9] and called DCL (Dynamic Cost-sensitive LRU) and ACL (Adaptive Cost sensitive
LRU), and we apply them to the case of load/store miss penalty. In these strategies the cost ratio is

1. Similar penalty sensitive policies could be defined with Random and PLRU. We did not run any
experiments with PS-Random and Random, but we ran all experiments reported in this paper with PS-PLRU
and PLRU. There was very little difference in all the observations. Thus, the fact that the miss rate of PLRU
is, in general, worse than the miss rate of LRU does not translate into significant penalty increases for pen-
alty-sensitive policies.
3

JEONG, STENSTRÖM AND DUBOIS
finite and we assign a finite cost to both load misses and store misses. Of course the cost of a load
miss is always larger than the cost of a store miss. As the cost ratio between load and store misses
goes down, more and more blocks in the load subset are replaced even if there are blocks in the
store subset (although there is always a bias in favor of replacing blocks in the store subset). Here
we briefly explain the idea behind DCL and ACL. More details can be found in [9].

In DCL, we keep track of the position of each block in an LRU stack as well as of the dynamic
cost of each block. When a block is loaded in the set its predicted next miss cost is tagged on to it
as its dynamic cost. We always victimize the LRU block with the lowest dynamic cost and, every
time we victimize a block that is not in the LRU position, we say that the block in the LRU posi-
tion is reserved. If it turns out that the victimized block is later referenced before the reserved
block then we reduce the dynamic cost of the reserved block by the dynamic cost of the victimized
block. With this competitive algorithm the dynamic cost of a reserved block goes down every time
a non-LRU block is wrongly victimized in its place. At one point the reserved block becomes a
candidate for replacement.

DCL pursues reservations of LRU blocks greedily, whenever a high-cost block is in a low
locality position. Although reservations are terminated quickly if they do not bear fruit, the wasted
cost of these attempted reservations accrue to the final cost of the algorithm. It turns out that, in
some applications, reservations yielding cost savings are often clustered in time, and reservations
often go through long streaks of failure. We also have observed that this pattern of alternating
streaks of success and failure varies significantly among cache sets.

Based on these observation, the adaptive cost-sensitive LRU algorithm (ACL) derived from
DCL implements an adaptive reservation activation scheme exploiting the history of cost savings
in each set. To take advantage of the clustering in time of reservation successes and failures, we
associate a two-bit saturating counter in each cache set to enable and disable reservations. The
counter increments or decrements when a reservation succeeds or fails, respectively. When the
counter value is greater than zero, reservations are enabled, otherwise the policy reverts to LRU.

Implementations of DCL and ACL are quite simple and details can be found in [9]. Extensive
simulations reported in [8] and [9] show that, although ACL does not always yield the lowest cost,
its behavior is more stable across benchmarks.

3. Baseline Architecture and Evaluation Methodology

3.1. Baseline Architecture

Figure 1 shows the baseline architecture. It consists of a processor with on-chip split instruction/
data caches and a store buffer in parallel with the data cache, and a main memory connected
through a system bus. The instruction cache is infinite and the data cache is non-blocking and
write-back.

The role of the store buffer is to eliminate the penalty of stores [11][18]. Among possible write
policies [11] we use write-allocate and fetch-on-write. When a store misses in the data cache, the
store immediately writes the data into the store buffer if an entry is available and the store instruc-
tion can retire. With this policy, the only penalty incurred by stores is when the store buffer is full.
However this penalty can be minimized with a proper retirement policy and a large store buffer
[18].
4

SIMPLE PENALTY-SENSITIVE CACHE REPLACEMENT POLICIES
3.2. Evaluation Methodology

We use trace-driven simulations to efficiently evaluate various replacement policies and
approaches to prediction. The traces are generated from eight Spec95 benchmarks [22] whose
main characteristics are listed in Table 1. For the benchmarks marked with an asterisk, the inputs
have been modified to yield reasonable trace sizes and simulation time.

The traces are generated with the Simple scalar tool set [2]. This simulator models an ILP pro-
cessor with an ISA similar to the MIPS ISA. Fortran programs are translated into C programs
using an f2c translator from AT&T. The benchmarks are compiled by gcc2.6.3 with O3 and loop
unrolling optimization options. The traces are gathered for the entire execution to avoid the prob-
lem of selecting a representative execution window. The traces include all user data references but
no instructions. They also include the PCs of every memory references to simulate access type
predictions. With these traces we are able to derive a complete set of results such as the ones in
Figure 2 in less than 12 hours on our workstation. The speed is critical to this research since the
search space of solutions is huge.

The cache is write-back and blocks are allocated in the cache upon misses. Cache block size is
set to 32 bytes for all evaluations and cache associativity varies from 2 to 8. Cache size selection is
a difficult problem to fairly evaluate replacement algorithms. If the working set is too small or too
large, replacement algorithms do not affect much the performance of the cache. In practice the
gains by replacement algorithms may vary significantly depending on the working set size profile
of each application. Thus, we vary the cache size from 16 KBytes to 1 Mbytes rather than simply
arbitrarily picking a few cache sizes.

Benchmark Input Inst. count (106) Loads (%) Stores (%) Load PCs Store PCs

Int

compress train 292.4 21.7 13.1 762 569

gcc protoize.i 501.9 26.8 14.7 32417 14392

go train 546.7 21.1 7.6 11352 5385

ijpeg test 537.6 20.0 8.7 3966 2783

li train 183.3 25.9 16.6 1443 1141

vortex train 742.7 30.5 22.3 14719 13157

FP
apsi train 662.6 24.0 13.9 6257 4377

mgrid train 585.9 33.3 3.0 1903 1297

Table 1: Characteristics of the benchmarks.

Figure 1: Block diagram of the baseline architecture.

CPU

D-cachestore buffer

main memory

system bus

I-cache
5

JEONG, STENSTRÖM AND DUBOIS
Our primary metric is the reduction of the number of replacement load misses over the basic
replacement policy. We only count replacement misses since cold misses are not affected by
replacement algorithms. A miss is counted only if the missing block was previously replaced from
the cache. By doing this, caches are automatically and precisely warmed up without blindly skip-
ping a certain number of references, and the performance comparisons are fair and noise-free with
respect to replacement algorithms. We also measure the memory traffic to estimate the impact of
the replacement policies on memory bandwidth.

4. Perfect Access Type Prediction

One key implementation issue is to predict whether the next access to each block in a set will be a
load or a store. When the predictions are 100% accurate, we maximize the number of replacement
store misses displacing load misses and we minimize the increase in the number of replacement
load misses due to bad predictions. Thus, under perfect access type prediction, we can expect a
maximum reduction of the number of replacement load misses, across all feasible prediction
schemes.

Figure 2 shows three graphs per benchmark. To get these numbers, we first run the trace and
mark each memory access to a block with the next access type to the same block; then we use this
augmented trace to simulate the system with 100% access type prediction accuracy. The first
graph shows the load miss rate (i.e., the total number of replacement load misses by LRU divided
by the total number of loads) as a function of the cache size. The second graph shows the load miss
savings (i.e., the total number of replacement load misses saved by PS-LRU over LRU) as a func-
tion of the cache size. The third graph shows the load miss improvement by PS-LRU over LRU
(this is the load miss savings divided by the number of replacement load misses) as a function of
the cache size.

First of all we observe that the load miss improvement is always positive and can be huge in
some cases. For example, compress and ijpeg reach more than 80% improvement, and gcc and
apsi more than 50%. At first these improvements were surprising to us, because the fraction of
store misses that can displace load misses is not that much. However, the improvements are related
to working set behavior rather than relative number of load and store misses.

By correlating the load miss rate and the load miss savings, we observe that the benchmarks
can be classified into two groups. In the first group which includes gcc, go, vortex and apsi, the
savings decreases almost monotonically with the load miss rate. This means that the savings
opportunities are uniform across all caches sizes. In the second group which includes compress,
ijpeg, li and mgrid, the load miss savings curves have one or two peaks.The peaks occur for 16
KBytes caches in ijpeg and for 64 KBytes cache in compress and li. Mgrid shows two peaks, one
for 32 KBytes and one for 512 KBytes caches. These savings peaks can be explained by the data
working set behavior of these applications. At a working set size transition (i.e. when the cache
becomes large enough to contain the next working set), the penalty sensitive policy effectively
increases the cache size for loads, by providing more cache space for data next accessed by loads.
Even if this effective cache size increase is relatively small the rapid fall of the miss rate at the
working set size transition is directly translated into a rapid rise of the load miss savings. In a
range of cache sizes with no working set size transition, the savings are rather moderate and rather
insensitive to the cache configuration. For very large cache sizes, the data of the application fits in
the cache and so the load miss savings reaches zero as replacements become very scarce.
6

SIMPLE PENALTY-SENSITIVE CACHE REPLACEMENT POLICIES
In most benchmarks, the load miss improvement slowly increases as the cache size increases
and shows a peak before it quickly approaches zero. With smaller cache sizes, the load miss sav-
ings are high, but the load miss rate is also high, thus resulting in moderate load miss improve-
ment. With bigger caches, such that the miss rate is lower, the improvement may show large
peaks, especially near working set size transitions. When the cache is extremely large the improve-
ment usually vanishes with the miss rate.

The savings and the improvement increase with cache associativity, because the replacement
policy has more effect on caches with larger associativity. Table 2 shows the weighted arithmetic
average of the load miss improvement across all the benchmarks. This table shows that, on the
average, the rate of improvement increases with the cache size and associativity. Therefore the
cost effectiveness of the hardware needed to implement penalty sensitive policies improves with
the complexity of the cache.

Figure 2: Load misses in PS-LRU with perfect access type prediction.

0.0

0.4

0.8

1.2

1.6
gcc

0.0

1.5

3.0

4.5

6.0
compress

0.0

0.6

1.2

1.8

2.4
go

0.00

0.15

0.30

0.45

0.60
ijpeg

0.0

0.5

1.0

1.5

2.0
li

0.0

0.5

1.0

1.5

2.0
vortex

0.0

0.7

1.4

2.1

2.8
apsi

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

15.0

30.0

45.0

60.0

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

12.0

24.0

36.0

48.0

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

25.0

50.0

75.0

100.0

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

2.0

4.0

6.0

8.0

0.0

0.8

1.6

2.4

3.2
mgrid

0

100

200

300

400

0

80

160

240

320

0

40

80

120

160

0

40

80

120

160

0

25

50

75

100

0

50

100

150

200

0

150

300

450

600

0

250

500

750

1000

lo
ad

 m
is

s
ra

te
 (%

)
lo

ad
 m

is
s

im
p.

 (%
)

lo
ad

 m
is

s

8-way
4-way
2-way

8-way
4-way
2-way

8-way
4-way
2-way

0.0

25.0

50.0

75.0

100.0

0.0

15.0

30.0

45.0

60.0

0.0

4.0

8.0

12.0

16.0

0.0

25.0

50.0

75.0

100.0
8-way
4-way
2-way

sa
vi

ng
s

(x
10

3)
lo

ad
 m

is
s

ra
te

 (%
)

lo
ad

 m
is

s
im

p.
 (%

)
lo

ad
 m

is
s

sa
vi

ng
s

(x
10

3)
7

JEONG, STENSTRÖM AND DUBOIS
5. Access Type Prediction

A 100% accurate prediction is impossible to achieve. The next access type must be predicted
either statically, dynamically or both (hybrid). Similar to other prediction schemes [3, 5, 12, 13,
26, 27], we attach next access type predictions to memory access instructions.

Figure 3 shows the motivation for attaching the next access type predictions to load and store
instructions in the code. In the simple access sequence in Figure 3(a) a load and a store access the
same block alternatively. If this pattern is very regular and common to many cache blocks, we can
safely predict the next access type solely based on the PC of the memory access instruction. In this
example, we just need to keep track of which type of memory access instruction follows the load
or the store. If the PC of the current access to any block is 100 then the next access type to the
same block is predicted as store, and if the current PC is 120 then the next access type is predicted
as load. Note that the predictions for this sequence can be done easily at compile time, by profiling
the execution for example.

In the second sequence in Figure 3(b) each instruction is repeated several times before moving
to the other. This case is more complex to predict than the previous sequence and compiler-based
prediction may fail here. (In general, sequences may be much more unpredictable; in some cases
the next memory access to the same block may have many different PCs in a data dependent man-
ner.)

Even for a very regular access pattern such as in Figure 3(b) a dynamic prediction scheme is
needed and access history must be kept. For instance, suppose each instruction of Figure 3(b) exe-
cutes twice per each iteration of the outer loop. After several iterations, the next access type his-
tory of PC 100 will be “010101”, where ‘0’ indicates a load and ‘1’ indicates a store. From the
history pattern we can predict that the next access by PC 100 will be a load. Note that in practice
predictions must be made on cache blocks instead of individual words, and this can be hard for
compilers to do.

average load miss improvement (%)
16KB 32KB 64KB 128KB 256KB 512KB 1MB

2-way 3.36 3.91 4.40 5.76 5.46 17.16 10.27
4-way 5.33 9.49 8.21 10.04 9.20 20.30 45.05
8-way 6.58 10.12 10.39 13.37 12.25 25.63 51.77

Table 2: Average of load miss improvement rate by PS-LRU.

Figure 3: Examples of access type sequences.

100 load

120 store

(a) (b)

100 load

120 store
8

SIMPLE PENALTY-SENSITIVE CACHE REPLACEMENT POLICIES
In the following we develop simple static and dynamic access prediction schemes. In the
dynamic case we present various design alternatives with cost consideration.

6. Static Prediction

We use a simple profiling scheme. We first run the program with a given data set and profile it.
During the profiling stage, we count the number of times that the next access to the same block
following each memory access instruction is either a load or a store. The static prediction for each
memory access instruction is derived from the following two values: l the fraction of loads to the
same block following the instruction, and T the threshold of acceptance. If l is greater than T, the
prediction is load and the PC for that prediction is deemed static. If 1-l is greater than T, the pre-
diction is store and the PC for that prediction is deemed static. Otherwise the instruction is not pre-
dictable and the PC is deemed dynamic.

Table 3 shows the static prediction accuracy of this simple approach in the case of an 8-way
128 KByte cache. To analyze the performance of the static prediction we use the following four
metrics: (i) the fraction of memory instructions which are deemed static (column “pc”), (ii) the
fraction of data references accessed by static memory instructions (column “ld/st”), (iii) the frac-
tion of stores covered by static prediction (column “st”), and (iv) the fraction of stores excluding
MRU hits which are accurately predicted (column “st-n”). The rationale for these latter numbers is
that predictions are never needed after MRU hits and thus predictions following MRU hits are use-
less.

To see the effect of the threshold T, we vary T from 0.999 to 0.95. We see that when T is 0.999
which allows less than 0.1% of errors, the weighted average across all the benchmarks shows that
81% of PCs are static and accurately cover 69% of memory references and 67% of stores. As we
increase the error rate to around 5%, the static PCs cover up to 74% of memory references on aver-
age. Overall the coverage of stores is lower than the coverage of loads and the gap increases as the
error rate increases.

A reverse interpretation of the prediction results in the table is that 19% of PCs show dynamic
behavior and they cover 31% of memory references and 34% of stores when T is 0.999. Thus the
number of dynamic PCs is far less than the number of static PCs but each dynamic PC covers more
references and even more stores.

program
T = 0.999 T = 0.99 T = 0.95

pc ld/st st st-n pc ld/st st st-n pc ld/st st st-n
comp. 93.0 78.0 75.9 6.9 93.5 78.7 75.9 6.9 94.7 88.7 90.3 18.1

gcc 77.4 61.9 53.1 17.7 79.5 67.3 57.1 24.3 82.9 73.3 65.2 49.7
go 75.5 53.1 53.2 20.8 78.2 60.6 55.3 21.4 83.3 70.5 58.4 23.2

ijpeg 88.5 68.9 67.1 27.2 90.0 80.2 68.2 27.6 92.2 86.7 76.7 42.3
li 80.6 63.6 61.2 26.7 82.5 72.0 65.6 57.3 83.9 76.9 69.3 62.0

vortex 84.8 70.1 71.6 31.9 85.9 75.1 76.5 37.2 88.1 78.5 79.7 70.5
apsi 90.1 73.6 73.7 33.2 90.9 76.0 74.1 33.2 92.4 79.5 75.1 34.1

mgrid 88.9 76.0 69.9 7.72 91.2 87.8 69.9 7.7 93.6 94.1 70.8 7.8
Avg. 81.3 68.7 66.9 18.0 83.0 72.3 68.6 23.5 86.1 74.4 70.1 32.5

Table 3: Coverage by static prediction (8-way 128 KB cache).
9

JEONG, STENSTRÖM AND DUBOIS
Furthermore, when considering the stores excluding MRU hits, the coverage by static predic-
tion is extremely low especially in compress and mgrid. On average it ranges from 18% to 33%.
This means that the static behavior is concentrated on MRU blocks. Accesses to non-MRU blocks
and accesses with wide inter-reference gaps are more dynamic. Also this static behavior can vary
widely with input data. This strongly suggests that dynamic prediction must be used to improve
the coverage especially for stores excluding MRU hits although, in general, static prediction can
be quite accurate.

We now apply the static predictions with 1% error rate to LRU. For dynamic PCs, the access
type is predicted as load. This results in near perfect predictions of load access type and almost
eliminates the cases that loads are mispredicted as stores. Figure 4 shows the load miss improve-
ment by PS-LRU over LRU with this static prediction. To judge the overall performance of the
static prediction, we compare Figure 2 (perfect prediction) with Figure 4 (static prediction) in the
light of the coverage of stores that are not MRU hits shown in Table 3.

Compress and mgrid show almost no improvement due to their low coverages. In general,
curves for the load miss improvement with static prediction have the same shape as the curves for
perfect predictions but the improvements are much lower. Notable exceptions are li and vortex in
which the static prediction reaches 50% of the gains obtained with perfect prediction. We also
observe that the improvements of static predictions are relatively better with small caches in gcc,
vortex and apsi. This is because more stores are covered as the number of MRU blocks is less in
smaller caches.

7. Dynamic Prediction

To predict the next access type dynamically we explore dynamic ATP (Access Type Predictor)
structures based on two levels of access type history. Figure 5 shows the general structure of these
dynamic ATPs. The hardware consists at most of three tables, PC table (PCT), access type history
table (ATHT) and pattern history table (PHT). These structures are not very different from one-
level or two-level branch predictors [27] except for the addition of the PCT at the frontend. PCT is
indexed with the data block address and yields the PC used to last access the block and called the

Figure 4: Load miss improvement by static prediction (T = 0.99).

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

-0.10

0.00

0.10

0.20

0.30
compress

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

7.0

14.0

21.0

28.0
li

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

0.4

0.8

1.2

1.6
vortex

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.00

0.04

0.08

0.12

0.16
mgrid

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K
0.0

2.0

4.0

6.0

8.0
apsi

lo
ad

 m
is

s
im

p
. (

%
)

8-way
4-way
2-way

lo
ad

 m
is

s
im

p
. (

%
)

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

0.8

1.6

2.4

3.2
gcc

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

0.4

0.8

1.2

1.6
go

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

10.0

20.0

30.0

40.0
ijpeg

8-way
4-way
2-way
10

SIMPLE PENALTY-SENSITIVE CACHE REPLACEMENT POLICIES
Previous PC or PPC. The remaining tables maintain up to two levels of access type history. ATHT
keeps track of the next access type history for each memory instruction and is indexed with the
PPC, using a simple hashing function. Every time the next access is a “load” a zero is shifted in the
ATHT entry. Every time the next access is a “store”, a one is shifted in the ATHT entry. Each
entry in PHT contains a saturating two-bit up-down counter, incremented every time the access is
a store and decremented every time it is a load. The prediction outcome is store if the counter is
greater than one.

Four schemes are evaluated in this paper. The first dynamic ATP (Figure 5(a)) utilizes one
level history with no ATHT. The second ATP (Figure 5(b)) maintains two levels of access type
history by analogy with the structure of a PAg branch predictor. In this case, the size of PHT
depends on the size of each ATHT entry. Aliasing can occur in PHT when the values of several
entries in ATHT are the same. To reduce this aliasing PHT must be structured into multiple tables
and these tables must be accessed with individual PC or set of PCs [27], leading to the third ATP
(Figure 5(c)), which is identical to the second ATP but different PHT tables are used for different
groups of PC. Thus the size of PHT tables may be large. The last ATP (“hybrid”) is a hybrid
scheme involving the static scheme and the per-PC PHT scheme of Figure 5, such that static pre-
dictions with 0.1% error rate override the predictions by the per-PC PHT ATP.

There are several possible implementations for PCT. It could be integrated into the data cache
or could be a separate table. In the first case, the PPC field is simply added to the blockframe tag.

Figure 5: General structures of dynamic ATPs.

ATHTPCT

blk@

pc

access type

PHT

1 0 1 00 1200

0 0 1 1......
MSB

1 0

update
prediction

120
PPC

blk@

PPC

(a) one-level

PCT

blk@

pc

access type

PHT

0 1200

MSB
1 0120

PPC
blk@

PPC

(b) two-level, global PHT

ATHT

1 0 1 0......

0 0 1 1......

PCT

blk@

pc

access type

PHT

0 1200

MSB
1 0120

PPC
blk@

PPC

(c) two-level, per-PC PHT
11

JEONG, STENSTRÖM AND DUBOIS
7.1. Prediction Updates and History Updates

The prediction update is a simple table lookup in PCT, ATHT (except for one-level), and PHT.
The entry in PHT is then used to change the store subset in the cache. The PCT is updated on every
cache access by storing the current PC into the PCT in a location indexed by the block address. To
update the history, PCT is indexed by the current block address, and the PPC is read from the entry
and indexes ATHT and/or PHT. The entry in ATHT and/or PHT is then updated.

Since replacements are invoked only upon cache misses, the latest time the store subset must
be identified is right after a miss occurs. Predictions made right after an MRU hit are useless,
because no replacement takes place then. MRU is particularly critical because most cache hits are
on MRU blocks and these hits happen in streaks. So we only change the store subset on MRU
changes.

MRU changes [20] happen when non-MRU blocks are hit or right after a cache miss. Figure 6
illustrates the situations. Upon a cache hit to a non-MRU block C as shown in Figure 6(a), MRU
block A and second MRU block B are moved down while block C takes MRU position.
Figure 6(b) shows the case that block E misses in the cache and takes MRU position. In both
cases, the next access type of block A is predicted and the change of store subset is limited to
block A which was previously the MRU block. In the case of Figure 6 (b) the victim is then
selected based on the new store subset.

The second operation is to update the history in ATHT and PHT. Because predictions are
made at the time of an MRU change, history modification on every cache access (including MRU
hits) may introduce noise in the prediction. As we will see it is better to update the history for
blocks that move into the MRU position at the time of an MRU change, such as blocks C and E in
Figure 6.

7.2. Prediction Accuracy (Infinite Hardware)

In this section we assume that an infinite amount of hardware is available for each possible ATP
structure so that no aliasing occurs. To select a particular prediction scheme, we measure the pre-
diction accuracy of each access type (load or store) since they each have a different impact.
Although both predictions are closely related to each other, the accuracy of store predictions
affects the number of load miss savings opportunities whereas the accuracy on load predictions
affects the number of accesses that are wrongly predicted as stores and hence increase the number
of load misses.

7.2.1. Dynamic-ALL ATPs

We first consider ATP structures which update the history on every reference. We call these ATPs
dynamic-ALL ATPs. Table 4 shows the misprediction rate per access type for every reference and

Figure 6: Timing of store group transitions.

MRU

LRU

A

B

C

D

(a)

MRU

LRU

A

B

C

D

(b)

E

12

SIMPLE PENALTY-SENSITIVE CACHE REPLACEMENT POLICIES
for the references excluding MRU hits in 128 KBytes eight-way cache and assuming infinite hard-
ware.

First we focus on the misprediction rate including MRU hits (left part of Table 4). Overall, the
prediction accuracy is excellent for all prediction schemes. As expected the ATPs using a two-
level history outperform the APT with one-level history. From the comparison between the second
(global PHT) and the third (per-PC PHT) schemes, we observe that there is sizable room for
improvement if the aliasing on PHT is eliminated. The predictions by the hybrid scheme are
slightly better than the per-PC PHT scheme. Overall the misprediction rates of stores are higher
than the misprediction rates of loads.

If we focus now on the prediction on non-MRU hits only (right part of Table 4), the mispre-
diction rate is much higher across all the benchmarks, especially for stores. This is because stores
have higher hit rate on MRU blocks than loads especially when compilers with high optimization
levels (such as the one we use) attempt to cluster stores. As a result, the more accurate predictions
for MRU hits are removed. Unfortunately, the numbers without MRU hits in Table 4 are more
indicative of the performance of the predictor for the problem addressed in this paper.

7.2.2. Dynamic-MRU ATPs

In this section we focus on dynamic ATPs which update history and predict access type on MRU
changes only. We call these dynamic-MRU ATPs.

Table 5 shows their misprediction rates in 128 KBytes 8-way cache. This data shows that, on
average, the predictions for non-MRU accesses are noticeably improved by dynamic-MRU ATPs.
One-level history outperforms two-level history with global PHT and is also almost as good as
two-level per-PC PHT. The predictions by the hybrid scheme are slightly better than per-PC PHT,
as in dynamic-ALL.

program

Dynamic-ALL with MRU hits Dynamic-ALL without MRU hits

one-level global PHT per-PC PHT hybrid one-level global PHT per-PC PHT hybrid

ld% st% ld% st% ld% st% ld% st% ld% st% ld% st% ld% st% ld% st%

compress 1.60 4.46 1.55 3.73 1.52 3.42 1.52 3.41 11.08 51.26 13.34 53.52 13.44 49.82 13.44 49.81

gcc 3.60 7.35 3.36 6.67 2.35 6.53 2.35 6.40 4.07 27.46 4.35 27.57 3.40 30.20 3.40 30.00

go 4.09 15.36 4.20 16.41 3.45 14.01 3.45 13.93 5.58 41.79 5.76 45.40 5.45 42.85 5.45 42.78

ijpeg 1.55 3.20 1.32 3.17 1.05 2.97 1.05 2.91 12.60 41.40 12.82 41.21 12.66 40.84 12.66 40.77

li 4.73 6.69 4.19 6.77 2.99 4.85 2.99 4.83 7.65 28.83 6.25 28.09 5.37 28.11 5.37 28.06

vortex 3.37 6.46 1.79 3.24 0.93 2.12 0.93 2.07 1.05 16.39 1.02 15.55 0.84 15.92 0.84 15.40

apsi 5.24 9.62 4.17 7.96 3.16 6.18 3.16 6.15 7.90 40.46 6.68 37.24 6.05 35.95 6.05 35.92

mgrid 0.59 8.44 0.59 8.19 0.38 8.20 0.58 8.15 11.15 52.99 11.18 52.88 11.18 52.92 11.18 52.90

Average 3.01 7.53 2.43 6.09 1.80 5.03 1.80 4.97 6.45 40.46 6.52 40.03 6.22 39.31 6.22 39.22

Table 4: Misprediction rate by dynamic-ALL ATPs (128KByte 8-way cache; infinite hardware).
13

JEONG, STENSTRÖM AND DUBOIS
The number of MRU blocks in the cache has an impact on history updates in the case of
dynamic-MRU. Figure 7 shows the misprediction rate by two dynamic-MRU ATPs as the number
of MRU blocks (or cache sets) varies from 64 to 16 K by changing the size of an 8-way cache. The
misprediction rates mostly increase with the number of MRU blocks since more references are fil-
tered out by MRU hits such that remaining references are more sparse and difficult to predict. The
data also indicates that the two-level scheme is not very effective as compared to the one-level
scheme.

Figure 8 shows the load miss improvement by PS-LRU with two dynamic-MRU ATPs. Over-
all the improvement rates are very close, with a few exceptions. In apsi, the two-level ATP per-
forms better due to better predictions for both loads and stores as shown in Figure 7. The data
shows very low or even negative improvements at several design points especially with eight-way
caches. These results are very different from the results with perfect predictions in which eight-

program
Dynamic-MRU

one-level global PHT per-PC PHT hybrid
ld% st% ld% st% ld% st% ld% st%

compress 8.12 48.60 8.50 55.32 8.50 53.19 8.48 53.47
gcc 3.61 19.62 4.62 20.96 2.20 30.14 2.20 29.11
go 3.13 33.29 3.07 37.31 2.19 41.24 2.19 40.96

ijpeg 7.40 25.08 9.05 25.04 6.67 25.05 6.67 24.70
li 5.62 22.37 4.74 23.84 2.00 24.45 1.99 24.11

vortex 0.71 11.09 0.68 11.57 0.55 15.78 0.55 14.58
apsi 3.14 14.48 3.52 13.40 2.19 11.02 2.19 10.96

mgrid 10.75 34.23 10.39 34.74 9.72 34.88 9.72 34.88
Average 4.64 25.67 4.78 26.92 3.92 27.83 3.92 27.56

Table 5: Misprediction rate by dynamic-MRU ATPs (128 KByte 8-way cache; infinite hardware).

Figure 7: Misprediction rate by dynamic-MRU ATPs by set count.

0.0

15.0

30.0

45.0

60.0

compress

0.0

12.0

24.0

36.0

48.0
gcc

0.0

25.0

50.0

75.0

100.0
go

0.0

8.0

16.0

24.0

32.0
ijpeg

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

0.0

8.0

16.0

24.0

32.0

li

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

0.0

10.0

20.0

30.0

40.0
vortex

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

0.0

6.0

12.0

18.0

24.0
apsi

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

0.0

10.0

20.0

30.0

40.0

mgridld two-level
st two-level
ld one-level
st one-level

m
is

p
re

d
ic

ti
o

n
 r

at
e

(%
)

m
is

p
re

d
ic

ti
o

n
 r

at
e

(%
)

14

SIMPLE PENALTY-SENSITIVE CACHE REPLACEMENT POLICIES
way caches yield large improvements. Negative improvements in ijpeg and apsi are mostly due to
cache conflicts by several blocks whose access type is wrongly and consistently predicted as store
and accessed alternatively many times. If this happens, the caches with larger associativity suffer
more from the conflicts by leaving other blockframe in a set under-utilized. As the cache size
increases these conflicts are reduced and PS-LRU improves.

In summary, we observe that one-level does as well as two-level per-PC and outperforms two-
level global. This advocates the use of the one-level scheme since its implementation cost is sig-
nificantly lower than the cost of the two-level scheme.

7.3. One-level Dynamic-MRU ATPs with Finite Hardware

With finite hardware, integrating PCT with the cache in the one-level scheme is simpler and
ensures that we at least have the PPCs for all blocks present in the cache, which are the most likely
blocks to be accessed next. When the PCT is separate it may not contain the PPCs of all the blocks
in the cache, unless its organization is such that it includes the cache.

When the PCT is integrated into the cache, its number of entries is the number of cache blocks
and the PPC is not available for blocks which are not currently in cache. Thus we cannot update

Figure 8: Load miss improvement rate in PS-LRU with dynamic-MRU ATPs (infinite hardware).

-10.0

0.0

10.0

20.0

30.0
compress

-6.0

0.0

6.0

12.0

18.0
gcc

0.0

1.0

2.0

3.0

4.0
go

-40.0

-20.0

0.0

20.0

40.0
ijpeg

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

8.0

16.0

24.0

32.0
li

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

2.0

4.0

6.0

8.0
vortex

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

-8.0

0.0

8.0

16.0

24.0
apsi

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

25.0

50.0

75.0

100.0
mgrid

0.0

8.0

16.0

24.0

32.0
compress

-16.0

-8.0

0.0

8.0

16.0
gcc

0.0

1.0

2.0

3.0

4.0
go

-40.0

-20.0

0.0

20.0

40.0
ijpeg

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

6.0

12.0

18.0

24.0
li

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

2.0

4.0

6.0

8.0
vortex

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

-6.0

0.0

6.0

12.0

18.0
apsi

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

25.0

50.0

75.0

100.0
mgrid

lo
ad

 m
is

s
im

p
. (

%
)

lo
ad

 m
is

s
im

p
. (

%
)

lo
ad

 m
is

s
im

p
. (

%
)

lo
ad

 m
is

s
im

p
. (

%
)

(b) two-level per-PC PHT dynamic ATP

(a) one-level dynamic ATP

8-way
4-way
2-way

8-way
4-way
2-way

8-way
4-way
2-way

8-way
4-way
2-way
15

JEONG, STENSTRÖM AND DUBOIS
the history upon cache misses, we can only update it on non-MRU hits, and the prediction accu-
racy may be degraded. Moreover in the case of an access to a block just replaced from a near-
MRU position due to a store prediction the history cannot be updated because we do not have the
PPC and the prediction remains unchanged. Of course, the smaller the cache, the worse these
effects are.

To solve this problem, we need to allocate more memory for PCT. Keeping with the idea that
it is advantageous to match the content of the PCT with the cache content, we add PCT entries in
each cache set for blocks that have just been replaced. We call this approach extended PPC direc-
tory (EPD), which is similar to the shadow directory idea proposed in [4] and [24]. The shadow
directory can be to help smart prefetching. In this paper, the role of the EPD is to support penalty-
sensitive replacement policies. The EPD is physically implemented as a part of cache but each
entry consists of only a PPC field and the block address tag, which is part of the directory.

It is interesting to note that PCT now serves a dual purpose as it can also be used to prefetch.
We have not explored the use of the PCT to prefetch selectively based on access type prediction.
These open possibilities show the advantage of merging PCT with the cache.

When a block is replaced, the PPC value is moved into an entry of EPD. EPD is maintained by
LRU. If an entry for a block missing in the cache set is found in EPD, the history is updated with
the matching PPC. Otherwise the history update is simply skipped. In our evaluation, the number
of entries in EPD is identical to the number of blocks in a cache set. Thus the hardware overhead
of EPD goes down with the block size. To find out how many bits should be in the PPC field, we
evaluate the effect of the number of entries in PHT. Figure 9 shows the weighted average of the
misprediction rates across all the benchmarks by one-level dynamic-MRU ATPs with and without
EPD for various number of PHT entries vary. The prediction with EPD is always better for both
load and store predictions.

Figure 10 shows the improvement rate on load misses in PS-LRU with a PHT of 8K entries.
Therefore PPC is 13 bit long and holds in two bytes. Overall the system with EPD outperforms the
system without EPD as expected. Also the performance of dynamic prediction with EDP is very
close to the performance of the dynamic-MRU ATP with infinite hardware shown in Figure 8.
Exceptions are gcc and go in which the number of distinct PCs are significantly larger than others.
Li and vortex perform well in both cases.

7.4. Memory Traffic

PS-LRU affects the traffic between the data cache and lower memory. The traffic is incurred by
the following three components: load misses, store misses and write-backs from the cache.

Figure 11 shows the traffic in a four-way cache. The first bar shows the decomposed traffic for
LRU. The other bars show the traffic for PS-LRU normalized to the traffic for LRU with different

Figure 9: Misprediction rate by one-level dynamic-MRU ATP.

25
6

51
2 1K 2K 4K 8K 16
K In
f

4.0

4.4

4.8

5.2

5.6

load

25
6

51
2 1K 2K 4K 8K 16
K In
f

30.0

32.5

35.0

37.5

40.0

store
without EPD
with EPD

without EPD
with EPD

m
is

pr
ed

ic
tio

n
ra

te
 (%

)

m
is

pr
ed

ic
tio

n
ra

te
 (%

)

16

SIMPLE PENALTY-SENSITIVE CACHE REPLACEMENT POLICIES
predictors. “Perfect” is for perfect prediction, “static” is for static prediction, “L2-inf” is the 2-
level per-PC PHT scheme with infinite hardware, “L1-inf” is the one-level history scheme with
infinite hardware, and “L1-8K” is the one-level history scheme with EPD and 8K PHT entries.

The number of store misses is of course increased in order to save load misses. In most bench-
marks, the increased rate of store misses is higher than the reduction rate of load misses. In some
benchmarks it takes three to ten store misses to save one load miss. This is mainly because stores
have more temporal locality in our benchmarks especially since we applied a high compiler opti-
mization level. Thus the total traffic by PS-LRU is increased in most situations as compared to the
traffic by LRU. However, this is not always the case. In li and mgrid, the total traffic by PS-LRU
is even decreased in 128KByte cache indicating that the replacements of blocks in store subset are
very effective at saving load misses. The write-back traffic also increases with the store miss traf-
fic because, when a block is replaced from the cache due to a store prediction, the chance is high
that the block is already dirty. Ideally, the total traffic by PS-LRU should not exceed the traffic by
PS-LRU with perfect prediction. If it does, it is due to mispredictions or to conflicts incurred by
several blocks whose access type predictions are stores. This situation occurs in ijpeg and apsi.
Overall the traffic increase is below 20% except for a few cases.

Figure 10: Load misses in PS-LRU by one-level dynamic ATP with 8K-entry PHT.

lo
ad

 m
is

s
im

p
. (

%
)

lo
ad

 m
is

s
im

p
. (

%
)

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

-40.0

-20.0

0.0

20.0

40.0
apsi

-10.0

-5.0

0.0

5.0

10.0
compress

-10.0

-5.0

0.0

5.0

10.0
gcc

-50.0

-25.0

0.0

25.0

50.0
ijpeg

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

7.0

14.0

21.0

28.0
li

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

-30.0

0.0

30.0

60.0

90.0
mgrid

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

2.0

4.0

6.0

8.0
vortex

-4.0

-2.0

0.0

2.0

4.0
go

8-way
4-way
2-way

8-way
4-way
2-way -31.7

lo
ad

 m
is

s
im

p
. (

%
)

lo
ad

 m
is

s
im

p
. (

%
)

-30.3

(a) without EPD

(b) with EPD

0.0

8.0

16.0

24.0

32.0
compress

-10.0

-5.0

0.0

5.0

10.0
gcc

-1.5

0.0

1.5

3.0

4.5
go

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

-6.0

0.0

6.0

12.0

18.0
apsi

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

7.0

14.0

21.0

28.0
li

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

0.0

2.0

4.0

6.0

8.0
vortex

16
K

32
K

64
K

12
8K

25
6K

51
2K

10
24

K

-30.0

0.0

30.0

60.0

90.0
mgrid

-40.0

-20.0

0.0

20.0

40.0

ijpeg
8-way
4-way
2-way

8-way
4-way
2-way
17

JEONG, STENSTRÖM AND DUBOIS
8. Injecting Finite Cost Ratios with DCL and ACL

So far, we have designed various access type predictors and evaluated them in PS-LRU. From the
results of prediction accuracy and the load miss improvements, we conclude that the one-level
dynamic-MRU ATP with EPD is the most cost-effective scheme among the various ATP schemes
we have considered. PS-LRU reduces the number of load misses by replacing them with store
misses whenever possible. This strategy reduces the total load/store miss penalty to a minimum if
the penalty of store can be kept negligible. However the number of store misses increases and,
with it, the memory traffic. To evaluate this trade-off further, we now apply DCL and ACL to the
problem of load/store miss penalties. In DCL and ACL, the cost ratio between a load miss and a
store miss is finite and replacement of block in load and store subset is competitive. As the load/
store miss penalty ratio goes down, we tend to replace more and more block in the load subset,
based on the temporal locality of all blocks.

In this section, we vary the cost ratio r between load and store miss penalties from 2 to infinite
to understand how DCL and ACL suppress the increase of store misses while reducing the number
of load misses (note that DCL with r infinite is equivalent to PS-LRU.) We apply two ATPs (the
perfect predictor and the one-level dynamic-MRU predictor with EPD and 8K-entry PHT) to DCL
and ACL and compare their performance. We focus on a 16-KByte 4-way cache and avoid larger
cache sizes where huge load miss improvements are obtained with very low miss rates.

Figure 12 shows the load miss improvements and the relative increase of store misses by DCL
and ACL over LRU as a function of r the cost ratio. The relative increase in the number of store
misses is the ratio between the increase of the number of store misses (over LRU) and the number
of load misses in LRU. In this way, the reduction of load misses and the increase of store misses
are on the same scale and they can be compared directly.

Figure 11: Normalized traffic in PS-LRU.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
PS-LRU (128KB, 4-way)

0.00

0.25

0.50

0.75

1.00

1.25

1.50
PS-LRU (16KB, 4-way)

load miss
store miss
write-back

compress gcc go ijpeg li vortex apsi mgrid

LR
U

pe
rfe

ct
st

at
ic

L2
-In

f
L1

-In
f

L1
-8

K

LR
U

pe
rfe

ct
st

at
ic

L2
-In

f
L1

-In
f

L1
-8

K

LR
U

pe
rfe

ct
st

at
ic

L2
-In

f
L1

-In
f

L1
-8

K

LR
U

pe
rfe

ct
st

at
ic

L2
-In

f
L1

-In
f

L1
-8

K

LR
U

pe
rfe

ct
st

at
ic

L2
-In

f
L1

-In
f

L1
-8

K

LR
U

pe
rfe

ct
st

at
ic

L2
-In

f
L1

-In
f

L1
-8

K

LR
U

pe
rfe

ct
st

at
ic

L2
-In

f
L1

-In
f

L1
-8

K

LR
U

pe
rfe

ct
st

at
ic

L2
-In

f
L1

-In
f

L1
-8

K

load miss
store miss
write-back
18

SIMPLE PENALTY-SENSITIVE CACHE REPLACEMENT POLICIES
We first focus on the case of the perfect predictor in Figure 12(a). The graphs show that the
load miss improvements by DCL quickly saturate after r = 2 in all benchmarks. On the other hand,
the relative increase in store misses steadily grows with the cost ratio, except for a few bench-
marks. With r infinite, the relative increase in store misses reaches almost up to three times the
load miss improvements except for compress and mgrid. In contrast, when r is small, DCL effec-
tively suppresses the increase in store misses in all benchmarks while achieving load miss
improvements comparable to the improvements with infinite cost ratio. This result strongly indi-
cates that stores are more clustered than loads such that additional load miss savings becomes
much more difficult as the cost ratio increases. Overall, the results indicate that DCL can effec-
tively reduce the number of load misses with a minimal increase in store misses by injecting a
small cost ratio between loads and stores in the replacement policy.

The graphs also show that ACL is very effective in suppressing the increase in store misses

Figure 12: Relative miss rate changes by DCL and ACL (16-KByte 4-way cache).

m
is

s
ra

te
 c

h
an

g
e

(%
)

1 2 4 8 16 32 64 in
f

cost ratio

0.0

1.5

3.0

4.5

6.0
compress

1 2 4 8 16 32 64 in
f

cost ratio

0.0

8.0

16.0

24.0

32.0
gcc

1 2 4 8 16 32 64 in
f

cost ratio

0.0

7.0

14.0

21.0

28.0
go

1 2 4 8 16 32 64 in
f

cost ratio

0.0

13.0

26.0

39.0

52.0
ijpeg

1 2 4 8 16 32 64 in
f

cost ratio

0.0

2.5

5.0

7.5

10.0
li

1 2 4 8 16 32 64 in
f

cost ratio

0.0

2.5

5.0

7.5

10.0
vortex

1 2 4 8 16 32 64 in
f

cost ratio

0.0

8.0

16.0

24.0

32.0
apsi

1 2 4 8 16 32 64 in
f

cost ratio

0.0

0.7

1.4

2.1

2.8
mgrid

m
is

s
ra

te
 c

h
an

g
e

(%
)

1 2 4 8 16 32 64 in
f

cost ratio

0.0

8.0

16.0

24.0

32.0
apsi

1 2 4 8 16 32 64 in
f

cost ratio

0.0

6.0

12.0

18.0

24.0
gcc

1 2 4 8 16 32 64 in
f

cost ratio

0.0

4.0

8.0

12.0

16.0
go

1 2 4 8 16 32 64 in
f

cost ratio

-10.0

5.0

20.0

35.0

50.0
ijpeg

1 2 4 8 16 32 64 in
f

cost ratio

0.0

2.5

5.0

7.5

10.0
li

1 2 4 8 16 32 64 in
f

cost ratio

-0.7

0.0

0.7

1.4

2.1
mgrid

1 2 4 8 16 32 64 in
f

cost ratio

0.0

2.0

4.0

6.0

8.0
vortex

m
is

s
ra

te
 c

h
an

g
e

(%
)

1 2 4 8 16 32 64 in
f

cost ratio

0.0

1.2

2.4

3.6

4.8
compress

m
is

s
ra

te
 c

h
an

g
e

(%
)

ld miss (ACL)

st miss (ACL)
ld miss (DCL)

st miss (DCL)

(a) perfect prediction

(b) one-level Dynamic-MRU with 8K-entry PHT

ld miss (ACL)

st miss (ACL)
ld miss (DCL)

st miss (DCL)
19

JEONG, STENSTRÖM AND DUBOIS
while the load miss improvement is marginally reduced. In mgrid, the increase in store misses is
extremely small as compared to the reduction of load misses.

In the case of the one-level ATP, the miss rate changes are scaled down but the shape of the
graphs follows the shape of the perfect prediction, except for ijpeg and mgrid. In ijpeg and mgrid,
ACL has almost the same performance as LRU, while avoiding the negative improvements
observed in DCL.

Table 6 shows the reservation (RV) rate and the reservation success (RVS) rate in DCL and
ACL with r = 2. The RV rate is the fraction of replacements in which the LRU block is reserved,
and the RV success rate is the fraction of reservations that are eventually successful. Overall the
RV rate and the RV success rate are very low mainly due to a large fraction of loads in all applica-
tions. These low rates are directly translated into low load miss improvements. With the perfect
ATP, ACL as compared to DCL effectively cuts fruitless reservations by yielding lower RV rates
but higher RV success rates across all benchmarks especially in mgrid. With the one-level ATP,
both the RV rate and RV success rate are reduced due to the misprediction of access type. In
mgrid, the performance of ACL is exceptional in suppressing fruitless reservations.

Overall, we observe that injecting small cost ratio instead of infinite cost ratio can be very
advantageous. ACL yields very reliable performance across all benchmarks by suppressing fruit-
less reservations.

9. Related Work

There is a vast body of literature on caches. We briefly overview here the work that is most rele-
vant. Previous papers to improve basic cache replacement mainly focus on reducing the miss
count. One common approach is to identify the type of locality. Gonzalez et al. [6] proposed the
use of independent caches based on the locality type. Wong and Baer [26] proposed instruction-
based prediction schemes to predict the locality per cache block. PCs are physically associated
with cache blocks and used to index the locality history table. Blocks which do not show locality
are considered first for replacements over others, however MRU blocks are never replaced. Tyson
et al. [25] proposed cache bypassing. In their scheme, memory operations which generate many
misses are first identified. Then the cache blocks accessed by those memory operations bypass the
caches so that blocks with high locality stay in the cache longer. Overall the savings opportunities
sought by these schemes are different than the ones sought by penalty-sensitive algorithms and
hence these schemes can be combined together with our algorithms to further reduce load misses.

comp gcc go ijpeg li vortex apsi mgrid

perfect
ATP

RV rate
DCL 15.3 22.3 20.5 20.1 13.4 10.3 23.8 13.0
ACL 6.5 11.5 16.4 13.8 6.0 4.6 11.7 2.0

RVS rate
DCL 8.2 16.6 26.8 25.7 8.7 9.9 13.9 9.0
ACL 11.9 25.5 28.3 29.4 11.9 15.0 16.3 39.2

one-level

ATP

RV rate
DCL 10.8 22.0 17.2 24.3 11.4 10.7 24.8 14.0
ACL 5.1 11.1 13.8 13.3 5.3 4.8 11.0 0.4

RVS rate
DCL 6.8 15.4 24.7 15.1 8.2 10.3 9.7 0.3
ACL 8.6 23.3 25.9 20.6 11.1 16.4 12.9 6.9

Table 6: RV rate and RVS rate in DCL and ACL (r = 2).
20

SIMPLE PENALTY-SENSITIVE CACHE REPLACEMENT POLICIES
Mounes-Toussi and Lilja [14] evaluated state-based cache replacement algorithms under the
MESI protocol. They found that a certain static replacement priority based on cache coherence
states with Random policy shows marginal improvement over Random policy. In the context of
non-uniform costs in caches, Jeong and Dubois [7] first proposed optimal cost-sensitive replace-
ment algorithms and evaluated optimal miss cost savings in multiprocessor systems where miss
costs differ by physical memory mapping. Later they proposed several realistic on-line algorithms
based on LRU [8][9].

The prediction of next access type is also addressed in other papers for different purposes.
Mowry [15] proposed exclusive mode prefetches in multiprocessors to save separate ownership
requests if the prefetched blocks will be written next. These perfetches are determined statically
through compiler analysis. The prediction of migratory sharing [12][23] is closely related to the
prediction of store access type. Many prediction schemes [3][5][12][13][25][26] rely on instruc-
tions to capture program behavior. Johnson and Hwu [10] proposed the use of macroblocks based
on the addresses of memory references to determine fetch size. Mukherjee and Hill [16] applied
two-level branch predictors to the predictions of next coherence messages. So and Rechtschaffen
[20] looked at the effects of accesses to MRU blocks. They observed that the working set changes
whenever the MRU block changes and accesses to MRU blocks dominates accesses to non-MRU
blocks in various kinds of programs.

10. Conclusion

This paper introduces and evaluates simple penalty-sensitive cache replacement algorithms, moti-
vated by the observation that the penalty of stores is mostly hidden in modern processors. Thus the
idea is to replace some load misses with store misses. Various common replacement policies such
as LRU, PLRU and Random can be easily sensitized to access penalties using this simple idea. In
this paper we focus on PS-LRU (Penalty-Sensitive LRU). The new policies rely on predicting the
next access type to each block. We have explored perfect prediction, static prediction and instruc-
tion-based dynamic access type predictors (ATPs).

The results for perfect prediction show the promise of considerable load miss improvements
using our simple policies. Moreover, the prediction of the next access type can be very accurate in
general. Unfortunately most of the accurate predictions are done on MRU hits and these predic-
tions are useless for replacements. Nevertheless, we have explored three types of dynamic ATPs,
mostly inspired from branch predictors and found the best configurations to reap the maximum
average benefits across eight benchmarks. We were able to obtain spectacular results in some con-
figurations, and low-to-moderate results in many cache configurations. But unfortunately, a few
configurations show negative results. Of course this is somewhat expected in replacement policies
and we should look at the average picture. However, there is room for improvement. One way is to
understand the reason for the bad observations and tune the policy to avoid them. Another direc-
tion of research is to explore new, different ATPs to avoid the negative results observed in some
configurations.

One concern of course is the increased memory traffic. In some cases the traffic increase is
high. To solve this problem one could exploit the write cache for example. If the write cache is
large enough then blocks in the write cache can be reclaimed quickly in the main cache, so that the
store miss rate to memory and the traffic to memory are both cut. In this paper, we have also con-
sidered finite cost ratios between store misses and load misses to utilize cost-sensitive replacement
21

JEONG, STENSTRÖM AND DUBOIS
algorithms and achieved reasonable increase of store misses while the reduction of load misses are
similar as for PS-LRU. To reduce the amount of store miss traffic, we have also applied previously
proposed replacement algorithms called DCL and ACL. These algorithms provide a trade-off
between complexity and memory traffic.

We have focused on a write-back data cache. If write-through caches are considered, the pen-
alty model needs to be changed since a no-allocate policy on write misses is commonly used. Our
policies could also be extended to lower-level caches in systems with cache hierarchies. The pre-
diction scheme can be common to all levels of caches. The major overhead is to pass the PC to the
lower level caches. With the trend of integrating meta data for several levels of caches inside the
processor, PCs are visible to the caches. Since an L2 cache is usually combined and instructions
are read only, it is possible that instructions stay longer in L2 cache. In this case the policies should
be further extended to consider instructions separately from data as an “instruction subset” for
instance and treat them in different way.

In our study, dynamic ATPs are dedicated to improving cache replacements by treating stores
and loads differently. In this context, the role of ATPs can easily be extended to capture locality
information on block accesses especially when PHT is incorporated with the cache. In this case,
the locality information is exploited on top of our algorithms and used to override LRU in select-
ing a victim in the load subset to further reduce load misses or to prefetch selectively based on next
access type and locality.

Additionally, ATPs can be used for other purposes especially in the context of multiproces-
sors. With the knowledge of the next access type, prefetches could be issued to reduce the cost of
ownership transfer. Similarly, if each memory request is tagged with its next access type, home
nodes or remote nodes serving the request can optimize future actions in advance not only by
knowing the next access type following the external request but also by predicting its own next
access type to the same block. By doing this, migratory sharing and invalidation actions can be
better optimized.

Finally, to optimize cache behavior and implement better penalty-sensitive cache policies, the
actual penalty of each memory access instruction should be monitored and predicted so that cache
replacement and prefetching can be tuned accordingly. This is a hard problem, much harder than
the one we have addressed here. However we feel that the work presented here and the work by
others [1][17] are initial steps in that direction.

References

[1] S. Abraham, R. Sugumar, D. Windheiser, B. Rau, and R. Gupta, “Predictability of Load/Store
Instruction Latencies,“ in Proceedings of the 26th International Symposium on
Microarchitecture, pp. 139-152, December 1993.

[2] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0,“ Computer Sciences Dept.
Tech. Report #1342, Univ. of Wisconsin-Madison, June 1997.

[3] T. Chen, “Data Prefetching for High-Performance Processors,“ Ph.D. Dissertation, University
of Washington, July 1993.

[4] T. Collins and D. Tullsen, “Hardware Identification of Cache Conflict Misses,“ in
Proceedings of the 32nd International Symposium on Microarchitecture, pp. 126-135, Nov.
1999.
22

SIMPLE PENALTY-SENSITIVE CACHE REPLACEMENT POLICIES
[5] J. Fu, J. Patel, and B. Janssens, “Stride Directed Prefetching in Scalar Processors,“ In
Proceedings of the 25th International Symposium on Microarchitecture, pp. 102-110, Dec.
1992.

[6] A. Gonzalez, C. Aliagas, and M. Valero, “A Data Cache with Multiple Caching Strategies
Tuned to Different Types of Locality,“ In Proceeding of International Conference on
Supercomputing, pp. 338-347, July 1995.

[7] J. Jeong and M. Dubois, “Optimal Replacements in Caches with Two Miss Costs,“ in
Proceedings of the 11th ACM Symposium on Parallel Algorithms and Architectures, pp. 155-
164, June 1999.

[8] J. Jeong, “Cost-Sensitive Cache Replacement Algorithms,“ Ph.D. Dissertation, University of
Southern California, May 2002.

[9] J. Jeong and M. Dubois, “Cache Replacement Algorithms with Nonuniform Miss Costs,“
IEEE Transactions on Computers, vol. 55, no. 4, pp. 353-365, April 2006.

[10] T. Johnson, M. Merten, and W. Hwu, “Run-time Spatial Locality Detection and
Optimization,“ in Proceedings of the 30th International Symposium on Microarchitecture,
Dec. 1997.

[11] N. Jouppi, “Cache Write Policies and Performance,“ in Proceedings of the 27th International
Symposium on Computer Architecture, pp. 191-201, May 1993.

[12] S. Kaxiras and J. Goodman, “Improving CC-NUMA Performance Using Instruction-Based
Prediction,“ in Proceedings of the 5th International Symposium on High-Performance
Computer Architecture, pp. 161-170, Jan. 1999.

[13] A. Lai and B. Falsafi, “Selective, Accurate, and Timely Self-Invalidation Using Last-Touch
Prediction,“ in Proceedings of the 27th International Symposium on Computer Architecture,
pp.139-148, June 2000.

[14] F. Mounes-Toussi and D. Lilja, “The Effect of Using State-Based Priority Information in a
Shared-Memory Multiprocessor Cache Replacement Policy,“ in Proceedings of International
Conference on Parallel Processing, pp. 217-224, Aug. 1998.

[15] T. Mowry, “Tolerating Latency Through Software-Controlled Data Prefetching,“ Ph.D.
Dissertation, Stanford University, Mar. 1994.

[16] S. Mukherjee and M. Hill, “Using Prediction to Accelerate Coherence Protocols,“ in
Proceedings of the 25th International Symposium on Computer Architecture, pp. 179-190,
June 1998.

[17] A. Seznec and F. Lloansi, “About Effective Cache Miss Penalty on Out-of-Order Superscalar
Processors,“ IRISA Report #970, Nov. 1995.

[18] K. Skadron and D. Clark, “Design Issues and Tradeoffs for Write Buffers,“ in Proceedings of
the 3rd International Symposium on High-Performance Computer Architecture, pp. 144-155,
Feb. 1997.

[19] A.J. Smith, “Cache Memories,“ ACM Computing Surveys, vol. 3, pp. 473-530, Sept. 1982.

[20] K. So and R. Rechtschaffen, “Cache Operations by MRU Change,“ IEEE Transactions on
Computers, v. 37, no. 6, pp. 700-709, June 1988.

[21] S. Srivivasan, R. Ju, A. Lebeck and C. Wilkerson, “Locality vs. Criticality,“ in Proceedings
of the 28th International Symposium on Computer Architecture, pp. 132-143, July 2001.
23

JEONG, STENSTRÖM AND DUBOIS
[22] Standard Performance Evaluation Corporation, http://www.specbench.org.

[23] P. Stenström, M. Brorsson, and L. Sandberg, “An Adaptive Cache Coherence Protocol
Optimized for Migratory Sharing,“ in Proceedings of the 20th International Symposium on
Computer Architecture, pp. 109-118, May 1993.

[24] H. Stone, High-Performance Computer Architecture, 2nd Edition, Addison-Wesley
Publishing Company, Nov. 1990.

[25] G.S. Tyson, M. Farrens, J. Matthews, and A. Pleszkun, “A Modified Approach to Data Cache
Management,“ in Proceedings of the 28th International Symposium on Microarchitecture, pp.
93-103, Dec. 1995.

[26] W. Wong and J. Baer, “Modified LRU Policies for Improving Second-Level Cache
Behavior,“ in Proceedings of the 6th International Symposium on High-Performance
Computer Architecture, pp. 49-60, Jan. 2000.

[27] T. Yeh and Y. Patt, “Alternative Implementation of Two-Level Adaptive Branch Prediction,“
in Proceedings of the 19th International Symposium on Computer Architecture, pp. 124-134,
May 1992.
24

