
Journal of Instruction-Level Parallelism 10 (2008) 1-9 Submitted 10/06; published 6/08

This article initially appeared in abbreviated form in ACM Computing Frontiers 2006.

Refactoring Intermediately Executed Code to
Reduce Cache Capacity Misses

Kristof Beyls KRISTOF.BEYLS@ELIS.UGENT.BE
Erik H. D’Hollander ERIK.DHOLLANDER@ELIS.UGENT.BE
Department of Electronics and Information Systems
Ghent University
Sint-Pietersnieuwstraat 41
B-9000, Ghent, Belgium

Abstract
The growing memory wall requires that more attention is given to the data cache behavior of

programs. In this paper, attention is given to the capacity misses i.e. the misses that occur because
the cache size is smaller than the data footprint between the use and the reuse of the same data.
The data footprint is measured with the reuse distance metric, by counting the distinct memory
locations accessed between use and reuse. For reuse distances larger than the cache size, the
associated code needs to be refactored in a way that reduces the reuse distance to below the cache
size so that the capacity misses are eliminated.

In a number of simple loops, the reuse distance can be calculated analytically. However, in
most cases profiling is needed to pinpoint the areas where the program needs to be transformed for
better data locality. This is achieved by the reuse distance visualizer, RDVIS, which shows the
intermediately executed code for critical data reuses. In addition, another tool, SLO, annotates the
source program with suggestions for locality optimization. Both tools have been used to analyze
and to refactor a number of SPEC2000 benchmark programs with very positive results.

1. Introduction

Moore's Law has been relatively robust in predicting a doubling of the speedup of a processor
every 18 months. This corresponds to a speedup increase of 59% per year. In contrast, the
speedup of the main memory advances only about 7% per year. As a consequence, the speed gap
between processor and main memory doubles every 21 months. Instruction and data caches have
been used to bridge this gap for a long time, and their performance depends on the hit rate. Cache
misses have been classified as cold misses, occurring the first time data enters into the cache;
conflict misses, which occur when two memory addresses are mapped onto the same cache line
and capacity misses, which occur when the cache size is too small to contain all the data
addressed between the use and the reuse of the same memory location. Cold misses are hardly
avoidable and conflict misses have been successfully reduced by architectural innovations and
compiler optimizations. Capacity misses on the other hand are caused by memory accesses
widely separated in place and time, which makes it difficult to trace their occurrence. In this
paper, the nature of the capacity misses is related to the distance between the use and the reuse of
the same memory location. In the first part, the reuse distance metric is presented, and it is shown
that this metric can be calculated analytically in function of the loop parameters for simple loops.
In the second part, a method is given to dynamically measure the reuse distance of a program in
execution and to find the code which is responsible for long reuse distances. In the third part, an
interprocedural analysis is presented, which allows to automatically annotate the program with

BEYLS AND D’HOLLANDER

2

refactoring hints to obtain a better data locality. In the last part, the techniques presented are used
to refactor a number of SPEC benchmarks for better data locality. As a result, these benchmarks
run significantly faster on different platforms.

2. Reuse Distance Equations

In order to reduce the number of capacity misses, it should be understood what causes them. Most
regular reuse occurs in loops and loops lend themselves for an analytical treatment. Loops are
also most easily transformed to change the data access patterns and granularity. Consider a
memory access stream, identified by a series of read/writes to different addresses. The reuse
distance is the number of unique locations between the two references with the same address.
E.g., consider the stream in Figure 1.

Figure 1: Memory References and Their Reuse Distances. The reuses distance of locations 8,

32, 116 and 0 are respectively 2, 4, 5 and 6.

The iteration space of a nested loop can be described by set of inequalities in the loop indices.
The volume of integer indices so obtained is a polytope (a bounded polyhedron). E.g., consider
two iteration points Ir and Is respectively in the first and second loop of the following two loops:

The locations touched between the use of A(i,j) in the first loop and the reuse as A(k,l) in the
second loop are subject to the following conditions (Figure 2):

1. (i,j) must belong to iteration space of the first loop,
2. (k,l) must belong to the iteration space of the second loop,
3. use and reuse address the same location, i.e., i = k and j = l,
4. the locations addressed after A(i,j) in the first loop are

{(x,y) : (x=i ∧ i<y≤N) ∨ (I<x≤N ∧ 1≤y≤ x)}, and
5. the locations addressed before A(k,l) in the second loop are

{(x,y) : (1≤x<k ∧ 1≤ y≤ k) ∨ (x=k ∧ 1≤y< l)}.

REFACTORING INTERMEDIATELY EXECUTED CODE TO REDUCE CACHE CAPACITY MISSES

3

Figure 2: Iteration Space and Memory Referenced between Use and Reuse of A(i,j).

Combining these conditions, and substituting k=i and l=j yields the following Presburger formula
[1] for the addressed data set of reference A(i,j) between use and reuse:

The count of the integer solution points (x,y) subject to the linear constraints in (1) is the reuse
distance. The count is parameterized in the loop bound N and can be expressed by an Ehrhart
polynomial. The calculation of the Ehrhart polynomial is achieved either by using polylib [2] or
using the method of Barvinok [3,4]. Unfortunately, the analytical calculation of the reuse distance
is much more complicated or intractable for real programs.

The analytical calculation of the reuse distance may be embedded in a cache aware compiler.
In that case, it is plausible that the compiler uses program transformations to reduce the reuse
distance, for example by fusing both loops in the example given, subject to a dependence
analysis. This intervention by the compiler is limited for a number of reasons. First, large reuse
distances are typically caused by complex instruction paths, which impede analytical treatment.
Second, a single pair of memory references in a program may entail reuses at many different
memory locations, each with their own reuse distances. Third, there is no known analytical way
to determine the instruction path between use and reuse. In the following sections a method is
presented to consistently identify the data references in the program causing large reuse distances
and associated capacity misses. In addition, data reuses with overlapping instruction paths are

BEYLS AND D’HOLLANDER

4

clustered. Improving the locality of a common instruction path will benefit all data reuses in the
cluster. In parallel, regular structures such as loops are annotated with hints to improve the data
locality. It is demonstrated that refactoring code segments based on these the hints substantially
improve the locality and execution time of a number of SPEC benchmark programs.

In the next section, a method is described to measure and order the reuse distances of a
program execution. Then, a basic block vector is introduced to mark the execution trace between
the use and reuse of a particular memory location. Clustering similar basic block vectors,
identifies parts of the program with poor data locality. In parallel with these calculations, a
graphical environment is introduced, which allows easy navigation to various parts of the
program susceptible for better data locality after refactoring.

3. The Reuse Distance of Real Programs

In this section, basic terms and definitions are introduced to characterize reuses in a program.

Definition 1: A memory access ax is a single access to memory that accesses address x. A
memory reference r is the source code construct, e.g., A(i,j) that generates a memory read or
write instruction at compile-time, which, in turn, generates a memory access at runtime. A
memory access trace T is a sequence of memory accesses, indexed by a logical time. The
difference in time between consecutive accesses in a trace is 1. The time of an access ax is
denoted by T[ax]. □
Definition 2: A reuse pair (ax, a΄x) is a pair of memory accesses in a trace such that both
accesses address the same data, and there are no intervening accesses to that data. The use of a
reuse pair is the first access in the pair; the reuse is the second access. A reference pair
(r1,r2) is a pair of memory references. The reuse pairs associated with a reference pair
(r1,r2) is the set of reuse pairs for which the use is generated by r1 and the reuse is generated
by r2, and is denoted by reuses (r1,r2). □
Definition 3: The Intermediately Executed Code (IEC) of a reuse pair (ax, a΄x) is the code
executed between T[ax] and T[a΄x]. □
Definition 4: The reuse distance of a reuse pair in a trace is the number of unique memory
addresses in that trace between use and reuse. □

In essence, in the source code, only reference pairs are visible (e.g., A(i,j) → A(k,l)). When
these reference pairs access equal memory locations x, a reuse pair (ax, a΄x) is associated with it.
Both accesses ax and a΄x differ by the time (or sequence number) they occur in the memory trace.
Typically a reference pair generates many reuse pairs. Cache misses are identified by the reuses
that have a distance larger than the cache size [5].

Since each reference pair covers many reuse pairs, each with its own reuse distance, the reuse
distances of a reference pair are represented by a histogram. E.g., in Figure 3(b), the reuse
histograms of two reference pairs are plotted with different colors. The corresponding reference
pairs are indicated by arrows in the source code (see Figure 3(a)).

To turn a cache miss into a cache hit, the reuse distance of the corresponding reuse pair must
be reduced to be smaller than the cache size [5]. To find a code transformation that reduces the
reuse distance of a particular reuse pair, however, it is not enough to know the source and the sink
of a reuse pair. It is also necessary to know the code trajectory causing the long-distance cache

REFACTORING INTERMEDIATELY EXECUTED CODE TO REDUCE CACHE CAPACITY MISSES

5

misses. This reuse path is called the intermediately executed code (or IEC) and a method to track
this code is presented next.

Figure 3: Reference pairs indicated by arrows and their corresponding reuse histogram.

4. Identifying and Clustering Reuse Paths by Basic Block Vectors

In order to identify program traces with the proper granularity, a basic block is chosen. The basic
blocks of the program are numbered consecutively, and a trace in the program between use and
reuse is indicated by the set of basic blocks which are executed. For a single trace, the basic
blocks are represented by an n-bit vector of zeros and ones, where the ones indicate the basic
blocks executed. Of course, many different traces may exist, each joining some uses and reuses of
a reference pair. To accommodate for multiple traces, the executed blocks are weighted against
the total number of traces to obtain their relative execution frequency in the path between use and
reuse. As a result, each reference pair has an associated basic block vector [6] containing the
relative execution frequencies of each basic block. This extension is still compatible with the
definition of a basic block vector for a single trace.

Cache misses are reduced by transforming or refactoring the code along reuse paths to
shorten many reuse distances. It is therefore useful to find reuse paths, which are common to a
large number of reuse pairs. Reuse paths affecting many reuses are obtained by comparing the
basic block vectors of many reuse pairs and clustering the blocks belonging to similar basic block
vectors. The algorithm uses nearest neighbor clustering, where the distance between adjacent
vectors can be arbitrarily selected between zero and infinity. This allows the user to find an
appropriate measure, which forms a cluster with many reuse pairs and maps onto tractable code
segments for refactoring. This is achieved by the Reuse Distance Visualizer, RDVIS.

After finding a bundle of long reuse distances, the reuse distance visualizer highlights the
intermediately execute code in the program. By the nature of a long reuse distance, this typically
involves large areas of program, including nested loops and functions. A further analysis of the
program structure permits to focus on the code which offers the highest potential for data locality
improvement. The SLO tool suggests locality optimizations by finding the most promising loops
and highlighting these loops with the code transformation hints.

5. Analyzing Control Flow Using the Least Common Ancestor Function

In general the use and the reuse of a reuse pair may occur in different loops and functions of the
program. The function in which both the use and the reuse are visible is called the least common
ancestor function or LCAF. The basic block in the LCAF where the use occurs is called the Use

BEYLS AND D’HOLLANDER

6

Basic Block (UBB) and a basic block that contains the reuse is called the Reuse Basic Block
(RBB). Note that the use and the reuse basic blocks may contain function calls in which the actual
memory access of the reuse pair occurs. The LCAF is found using the activation tree:
Definition 5: The activation tree [7] of a running program is a tree with a node for every function
call at runtime and edges pointing from callers to callees. □

The use site of a reuse pair (ax, a΄x) is the node corresponding to the function invocation in
which access ax, occurs. The reuse site is the node where access a΄x occurs. The Least Common
Ancestor Frame (LCAF) of a reuse pair (ax, a΄x) is the least common ancestor in the activation
tree of the use site and the reuse site of (ax, a΄x). The Least Common Ancestor Function is the
function that corresponds to the least common ancestor frame.

Since loops are the most prominent places for data reuse, we look for the loops that carry the
reuses. Similar to the least common ancestor function, the outermost loop is determined at which
the use or the reuse occurs. The corresponding basic blocks are called the non-nested reuse basic
blocks. These are defined as follows (see Figure 4).
Definition 6: The Nested Loop Forest of a function is a graph, where each node represents a
basic block in the function, and there are other edges from a loop header to each basic block
directly controlled by that loop header. The Outermost Executed Loop Header (OELH) of a
basic block BB with respect to a given reuse pair (ax, a’x) is the unique ancestor of that BB in the
nested loop forest that has been executed between use ax and reuse a΄x , but does not have
ancestors itself that are executed between use and reuse. The Non-nested Use Basic Block
(NNUBB) of (ax, a΄x) is the OELH of the us basic block of (ax, a΄x) .The Non-nested Reuse Basic
Block (NNRBB) of (ax, a΄x) is te OELH of the reuse basic block of (ax, a΄x). □

In practice, there are two major cases: the non-nested use and reuse basic blocks are the same,
which means that the use and reuse basic blocks are contained within the a single outermost loop,
or they are different, which means that the use and the use basic blocks are contained in different
loops.

Figure 4: (a) A Control flow graph, and (b) corresponding loop forest. The basic blocks

executed between use and reuse are indicated by double ellipses. For this particular
reuse pair, the Use Basic Block is 6 and the Reuse Basic Block is 9.

When the use and the reuse basic blocks belong to a common loop, i.e., NNUBB=NNRBB,
the reuse is contained in a single loop. A long reuse distance suggests that the loop traverses a
large data structure in each iteration of the outer loop. The distance can be made smaller by
ensuring that only a small part of the data structure is traversed in each iteration. The idea is to
bring small chunks or tiles of data into the cache and making sure that all the operations on that
chunk are executed before the next chunk is moved in. A number of transformations have been

REFACTORING INTERMEDIATELY EXECUTED CODE TO REDUCE CACHE CAPACITY MISSES

7

proposed, which tile large data structures to improve the locality: loop tiling [8], data shackling
[9], time skewing [10], loop chunking [11]. A special case is loop permutation, where the outer
and inner loops are swapped. In this way, long distances in the outer loop become small distances
in the inner loop. These transformations are suggested by annotating the loops with the words
TILE.

If both use and reuse are in different loops altogether, this indicates that the same data
structure is accessed in one loop and again in the second loop. Locality can be improved by
bringing these loops together so that the large data structure is accessed only a single time. This
type of refactoring is suggested by the words FUSE.

6. Results of Cache Hints Based Refactoring

Using RDVIS and SLO, a number of SPEC 2000 benchmarks were refactored for better cache
behavior and data locality. The program 183.equake simulates earth quakes. The main
optimization indicated was to tile an outer loop. Program 179.art simulates a neural network to
recognize objects in an image, together with a confidence level of how sure it is the object is truly
recognized. For this program, the tool shows that a middle loop needs to be tiled and a number of
loop nests in that loop need to be fused. For most of the indicated refactorings, in both
183.equake and 179.art, naively applying them would have violated data dependences, resulting
in incorrect output. Therefore, we applied a series of enabling transformations first to make the
indicated refactorings legal. For both 183.equake and 179.art, some array data needed to be
duplicated to eliminate false dependencies. Furthermore, a number of “enabling” loop
transformations were required to make the indicated transformations legal. For 179.art, the tiling
of the middle loop could not be performed even after trying to find enabling transformation,
because of true data dependences. The output and visualization by the tools presented in this
paper directed us towards finding a sequence of optimizations to improve data locality. After the
transformations, the programs run more than two times faster on average on a number of different
platforms, see Table 1.

 PENTIUM 4
(512KB)

ITANIUM
(2MB)

ALPHA
(8MB)

AVERAGE

Art 4.11 1.54 1.16 2.39
Equake 1.10 2.93 3.09 2.30

Table 1: Speedups on different platforms of Art and Equake after temporal locality
optimizations performed based on suggestions made by RDVIS and SLO. The cache
sizes of the largest cache level are indicated between parentheses for each platform.

As an illustration of the power of the SLO tool in revealing the causes of poor temporal
locality, we show two more examples from SPEC2000.

BEYLS AND D’HOLLANDER

8

Figure 5: Program 186.crafty: SLO views. The main (red) optimization requires tiling the loop

that iterates over all possible moves on the chess-board in a given board position.

Figure 5 depicts the major long-distance reuses for the chess program Crafty. This shows that
the major refactoring required is tiling the loop that iterates over the list of possible moves of
chess pieces for a given board position. Figure 6 shows the results for VPR, a place-and-route
tool for FPGAs. From the figure it follows that most long-distance reuses occur between different
invocations of try_swap, which optimizes placement by swapping two CLBs.

Figure 6: Program 175.vpr: SLO views. VPR is a place-and-router for FPGA design. It shows

the most important (red) refactoring in the source code for the placement phase in
FPGA place-and-route.

7. Conclusions

Measuring the reuse distance is a key factor for avoiding capacity misses and improving the
cache performance of regular programs. Using Presburger formulas to model the iteration space,
the reuse distance can be calculated analytically and expressed by Ehrhart polynomials for simple
loops, thereby giving a good insight into the relation between these distances and capacity misses.
Carrying this a step further, a number of tools is presented, in which the reuse distance was
calculated and mapped onto the intermediately executed code between use and reuse. Next, the
most prominent loops are automatically selected and annotated with hints to improve the data
locality by tiling or fusion. Using these techniques for a number of SPEC2000 benchmark
programs results in a speed up of more than two. The tools developed are RDVIS, the reuse
distance visualizer, and SLO, which Suggests Locality Optimizations. They are available at

REFACTORING INTERMEDIATELY EXECUTED CODE TO REDUCE CACHE CAPACITY MISSES

9

http://www.elis.UGent.be/~kbeyls/rdvis and http://slo.sourceforge.net,
respectively.

Acknowledgments

Kristof Beyls was supported by research project GOA-12051002.

References

[1] K. Beyls, “Software Methods to Improve Data Locality and Cache Behavior”, PhD thesis,
Ghent university, June 2004

[2] P. Clauss, “Counting Solutions to Linear and Nonlinear Constraints through Ehrhart
Polynomials: Applications to analyze and Transform Scientific Programs,” Proceedings of
the International Conference on Supercomputing, pp. 278-285, June 1996.

[3] S Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe, “Analytical
Computation of Erhart Polynomials: Enabling More Compiler Analyses and
Optimizations”, Proceedings of the 2004 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, pp. 248-258, September 2004.

[4] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe, “Counting Integer
Points in Parametric Polytopes Using Barvinok's Rational Functions”, Algorithmica, vol.
48, no. 1, 37-66, 2007

[5] K. Beyls and E.H. D’Hollander, “Generating Cache Hints for Improved Program
Efficiency”, Journal of Systems Architecture, vol. 51, no. 4, pp. 223-250, 2005.

[6] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically Characterizing
Large Scale Program Behavior”, Proceedings of the 10th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 45-57, Oct.
2002.

[7] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers Principles, Techniques, and Tools,
Addison-Wesley, 1986.

[8] J. Xue, Loop Tiling for Parallelism, Kluwer Academic Publishers. 2000

[9] I. Kodukula and K. Pingali, “Data-Centric Transformations for Locality Enhancement”.
International Journal of Parallel Programming, vol. 29, no. 3, pp. 319–364, 2001.

[10] D. Wonnacott, “Achieving Scalable Locality with Time Skewing”, International Journal of
Parallel Programming, vol. 30, no. 3, pp. 181–221, 2002.

[11] C. Bastoul and P. Feautrier, “Improving Data Locality by Chunking”, Proceedings of the
12th International Conference on Compiler Construction, LNCS 2622, pages 320–335,
April 2003.

