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Abstract

Traditionally, fault tolerance researchers have required architectural state to be nu-
merically perfect for program execution to be correct. However, in many programs, even if
execution is not 100% numerically correct, the program can still appear to execute correctly
from the user’s perspective. Hence, whether a fault is unacceptable or benign may depend
on the level of abstraction at which correctness is evaluated, with more faults being benign
at higher levels of abstraction, i.e. at the user or application level, compared to lower levels
of abstraction, i.e. at the architecture level.

The extent to which programs are more fault resilient at higher levels of abstraction is
application dependent. Programs that produce inexact and/or approximate outputs can
be very resilient at the application level. We call such programs soft computations, and
we find they are common in multimedia workloads, as well as artificial intelligence (AI)
workloads. Programs that compute exact numerical outputs offer less error resilience at
the application level. However, we find all programs studied in this paper exhibit some
enhanced fault resilience at the application level, including those that are traditionally
considered exact computations—e.g., SPECInt CPU2000.

This paper investigates definitions of program correctness that view correctness from
the application’s standpoint rather than the architecture’s standpoint. Under application-
level correctness, a program’s execution is deemed correct as long as the result it produces
is acceptable to the user. To quantify user satisfaction, we rely on application-level fi-
delity metrics that capture user-perceived program solution quality. We conduct a detailed
fault susceptibility study that measures how much more fault resilient programs are when
defining correctness at the application level compared to the architecture level. Our re-
sults show for 6 multimedia and AI benchmarks that 45.8% of architecturally incorrect
faults are correct at the application level. For 3 SPECInt CPU2000 benchmarks, 17.6%
of architecturally incorrect faults are correct at the application level. We also present two
lightweight fault recovery mechanisms, stack recovery and hard state recovery, that exploit
the relaxed requirements of application-level correctness to reduce checkpoint cost. Stack
recovery recovers 66.3% of crashes in soft computations with near-zero runtime overhead,
and hard state recovery recovers 89.7% of crashes in soft computations with half the runtime
overhead of conventional incremental checkpointing under application-level correctness.

1. Introduction

Technology scaling—including feature size, voltage, and clock frequency scaling—has brought
tremendous improvements in performance over the past several decades. Unfortunately,
these same trends will make computer systems significantly more susceptible to hardware
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faults in the future, resulting in reduced system reliability. Sources of hardware faults in-
clude soft errors [1], wearout [2], and process variations [3]. In anticipation of the reduced
reliability that further technology scaling will bring, computer architects have recently fo-
cused on several important fault tolerance issues. Areas of focus include characterizing fault
susceptibility [4], and developing low-cost fault detection [5], [6], [7], [8] and recovery [9]
techniques.

Fundamental to all such reliability research is the definition of correct program execu-
tion. In the past, researchers have made very strict assumptions about program correctness.
Traditionally, a program’s execution is said to be correct only if architectural state is nu-
merically perfect on a cycle-by-cycle basis. A similar (though slightly looser) notion of
correctness requires a program’s visible architectural state—i.e., its output state—to be nu-
merically perfect. In both cases, correctness requires precise numerical integrity at the
architecture level, a fairly strict requirement.

An interesting question is: must we require strict numerical correctness for overall pro-
gram execution to be correct? In many programs, even if execution is not 100% numeri-
cally correct, the program can still appear to execute correctly from the user’s perspective.
Although such numerically faulty executions do not pass the muster of architecture-level
correctness, they may be completely acceptable at the user or application level. Hence,
whether a fault is intolerable or benign may depend on the level of abstraction at which
correctness is evaluated. In general, more faults are acceptable at higher abstraction levels,
e.g. the application level, compared to lower abstraction levels, e.g. the architecture level.

How much more fault resilient are programs at the application level? The answer to
this question is application dependent, and primarily depends on how numerically exact
a program’s outputs need to be. For instance, programs that process human sensory and
perception information are highly fault resilient at the application level. An important ex-
ample is multimedia workloads. Another example is artificial intelligence workloads (e.g.,
reasoning, inference, and machine learning), which have become increasingly important
recently [10]. These programs belong to a class of computations which we call soft compu-
tations [11], [12].} Soft computations compute on approximate data values associated with
qualitative results, making them highly fault resilient because errors in numerical results
seldom change the user’s interpretation of those numerical results. In contrast, programs
whose correctness are tied directly to the numerical values they compute may offer little
error resilience at the application level. Certain lossless data compression algorithms are
examples of such programs. While the degree of error resilience at the application level
varies across applications, we find all programs studied in this paper exhibit some enhanced
fault resilience at the application level, including those that are traditionally considered as
exact computations—e.g., SPECInt CPU2000.

This paper explores definitions of program correctness that view correctness from the
application’s standpoint rather than the architecture’s standpoint. It is an extension of our
previous work on the same subject [13]. Under application-level correctness, a program’s ex-
ecution is deemed correct as long as the result it produces is acceptable to the user. In other
words, correctness depends on the user’s interpretation of a program’s numerical result, not

1. The term “soft computation” is normally used to describe artificial intelligence algorithms. In this paper,
we use the term to describe multimedia workloads as well because we find they exhibit similar inexact
computing properties as the A.l. algorithms.
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the numerical result itself. To quantify user satisfaction, we rely on application-level fidelity
metrics that capture program solution quality as perceived by the user. Because the no-
tion of solution quality is different across applications, our fidelity metrics are application
specific, though applications from the same domain may share common fidelity metrics.

Our goal is to understand how application-level correctness impacts a system’s suscepti-
bility to faults, especially transient faults or soft errors. We provide a detailed fault injection
study that quantifies how much more resilient programs are to soft errors at the application
level compared to the architecture level. (This fault injection study was also presented in
our earlier work [13]). Our study injects 156,205 faults into a detailed architectural simula-
tor, and performs 27,067 separate runs to program completion. For soft computations, we
find 45.8% of fault injections that lead to architecturally incorrect execution produce ac-
ceptable results under application-level correctness. For SPEC programs, a smaller portion
of architecturally incorrect faults, 17.6%, are correct at the application level.

In addition to studying fault susceptibility, we also present two lightweight fault recov-
ery techniques, stack recovery and hard state recovery, that exploit the relaxed requirements
of application-level correctness to reduce checkpoint cost, trading off correctness for per-
formance. In particular, stack recovery only checkpoints the minimum state required to
restart a program after a crash. In contrast, hard state recovery takes more comprehen-
sive checkpoints to provide higher fault protection. Currently, our stack recovery technique
is automated, but our hard state recovery technique relies on manual code inspection to
identify what to checkpoint. For the multimedia and AI workloads, stack recovery can
recover 66.3% of program crashes to application-level correctness with near-zero runtime
overhead. Hard state recovery can recover 89.7% of program crashes to application-level
correctness with half the runtime overhead of a conventional incremental checkpointing
technique. While stack recovery was studied in our previous work [13], hard state recovery
is introduced for the first time in this paper.

The remainder of this paper is organized as follows. Section 2. discusses our definitions
of application-level correctness. Then, Section 3. presents our experimental methodology
and Section 4. reports our fault susceptibility study. Next, Sections 5. and 6. describe and
evaluate our lightweight recovery techniques. Finally, Section 7. presents related work, and
Section 8. concludes the paper.

2. Application-Level Correctness

This section presents our application-level correctness definitions. We begin by discussing
soft program outputs, an important property for application-level correctness (Section 2.1.).
Then, we present fidelity metrics that quantify application-level correctness for the bench-
marks studied in this paper (Section 2.2.). Finally, we discuss limitations of our approach
(Section 2.3.).

2.1. Soft Program Outputs

Programs can exhibit enhanced error resilience at the application level compared to the
architecture level for many reasons. However, the likelihood of this happening increases
when a program permits multiple valid outputs. In this paper, we say such programs have
“soft outputs.” Soft outputs commonly occur in programs computing results that are
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interpreted qualitatively by the user. Different numerical results can lead to the same or
similar qualitative interpretation. Hence, multiple numerical outputs may be acceptable to
the user. Another source of soft outputs is heuristic-based algorithms. Many programs solve
complex problems for which optimal solutions are unachievable. Instead of the optimal,
they try to find the best solutions possible given available computational resources. In
practice, many solutions are “good enough.” So, once again, multiple numerical outputs
are acceptable to the user.

Soft outputs offer new opportunities for optimizing fault tolerance. In particular, faults
that cause a program to simply generate one of its multiple valid outputs are completely
benign. It is unnecessary to protect against such faults, allowing designers to reduce the
cost of fault protection. For example, in Sections 5. and 6., we will study two lightweight
fault recovery techniques that avoid checkpointing data that only contribute to soft program
outputs, thus reducing checkpoint cost.

To illustrate the soft output property, Table 1 lists 9 benchmarks used in our study—three
from the multimedia domain, three from the artificial intelligence (AI) domain, and three
from SPECInt CPU2000. The multimedia workloads, G.721-D, JPEG-D, and MPEG-D,
are taken from the Mediabench suite [14], and perform audio, image, and video decompres-
sion, respectively. All three decompression algorithms are lossy. The Al workloads are from
various sources. LBP performs Pearl’s Loopy Belief Propagation [15], a message-passing
algorithm for approximate inference on large Markov networks. Our LBP implementation
solves Taskar’s Relational Markov Network applied to a web-page classification problem [16].
SVM-L is the learning portion of a Support Vector Machine algorithm, called SVMlight [17].
SVM-L learns the parameters for a support vector (SV) model on a training dataset. GA
is a genetic algorithm applied to multiprocessor thread scheduling [18]. Given a thread de-
pendence graph, GA searches for a thread schedule that minimizes execution time. Finally,
the SPECInt CPU2000 workloads are 164.gzip and 256.bzip2, two lossless data compression
algorithms, and 175.vpr, a place-and-route program. (The data inputs we use for vpr only
perform placement—see Table 3 in Section 3.).

The second column of Table 1 reports the numerical outputs computed by each bench-
mark. As we will show, all of these numerical outputs are soft, so multiple valid outputs
exist. In most cases, the soft outputs are due to the qualitative nature of the program
results. When appropriate, we indicate this in the third column, labeled “Qualitative Out-
put.” Many of our benchmarks also achieve soft outputs because they are heuristic-based;
some examples of this are discussed below.

For the three multimedia programs, the numerical outputs are the decompressed datafiles,
either in audio, image, or video format. Once decompressed, these datafiles can be played
back to the user; hence, the qualitative output of these programs is the perceived playback,
either aural or visual, of the numerical outputs. Because the user’s playback experience is
qualitative in nature, it is possible for different numerical outputs to be acceptable (i.e.,
valid) to the user.

Like the multimedia workloads, the AI workloads also exhibit soft program outputs.
In LBP, nodes in the Markov network contain probability distribution functions (PDFs)
over the possible class types inferred for web pages. Each PDF encodes how strongly we
“believe” a particular web page belongs to each class type. The numerical output for
LBP, hence, is the collective belief values across the entire Markov network. In SVM-L, the
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Benchmark Numerical Output | Qualitative Output | Fidelity Metric
Multimedia
G.721-D Decompressed Perceived audio Segmental Signal-to-Noise
audio datafile Ratio (SNRseg)
JPEG-D Decompressed Perceived image Peak Signal-to-Noise
image datafile Ratio (PSNR)
MPEG-D Decompressed Perceived video Peak Signal-to-Noise
video datafile Ratio (PSNR)
Artificial Intelligence
LBP Network belief values Web Page Class Types | % Classification Change
SVM-L Support Vector Model | Test Data Class Types | % Classification Change
GA Thread Schedule - % Schedule Length Change
SPECInt CPU2000
164.gzip Compressed file - Compression Ratio
256.bzip2 Compressed file - Compression Ratio
175.vpr Cell placement - Consistency Check

Table 1: Numerical and qualitative outputs computed by our benchmarks. The last column
lists the fidelity metrics used to quantify solution quality.

numerical output is the SV model parameters learned from the training dataset, as described
earlier. Both LBP and SVM-L’s numerical outputs are soft because they are used to derive
classification answers, the qualitative output for these programs. LBP selects a class type
for each web page by choosing the most likely class indicated by the corresponding PDF.
For SVM-L, extracting class types is more involved because SVM-L itself doesn’t perform
classification. To obtain the class types we want, we run a separate SVM classifier (not
listed in Table 1) that uses the SV model computed by SVM-L to perform classification
on a test dataset. Computing the classification answers in both LBP and SVM-L is an
extremely inexact process. Multiple numerical outputs (belief values for LBP and SV model
parameters for SVM-L) can lead to the same (and hence, valid) classification answer. In
GA, the numerical output is the thread schedule it computes. GA’s numerical output does
not have a qualitative interpretation; however, users can still accept multiple numerical
outputs because GA is a heuristic algorithm. Although it is infeasible to find the optimal
thread schedule, in practice, there are many thread schedules that are adequate. Any one of
these good enough answers represents a valid numerical output from the user’s perspective.
Somewhat surprisingly, the three SPEC program outputs are also soft, though we do not
call the SPEC benchmarks soft computations. As indicated in Table 1, none of the SPEC
outputs have qualitative interpretations; nonetheless, multiple numerical outputs are valid.
For the data compression algorithms, there is flexibility in how datafiles are compressed even
though the compression algorithms themselves are exact. We will discuss the reasons for
this in Section 4.. The vpr benchmark tries to find a cell block placement for a chip design.
Like GA, vpr is heuristic-based since finding an optimal placement (one that minimizes
interconnect distance) is intractable. Hence, multiple cell block placements are valid.
Finally, while all the benchmarks in Table 1 exhibit soft outputs, it is important to
note there are also programs for which multiple valid outputs do not exist. For example,
sorting algorithms (e.g., quicksort) permit only one correct answer. Thus, there is little or no
additional error resilience that can be exploited at the application level. We do not consider
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such programs in this paper since our goal is to characterize and exploit application-level
error resilience where it exists. Although studying the extent to which soft outputs occur
in programs is an important direction of research, it is beyond the scope of this work.

2.2. Solution Quality

Because the benchmarks in Table 1 permit multiple valid numerical outputs, their correct-
ness is not simply “black or white;” hence architecture-level correctness (where all archi-
tectural values are either correct or wrong) is clearly too strict. An appropriate correctness
definition should accommodate all valid numerical outputs. At the same time, it is impor-
tant to recognize not all valid outputs are of equal value; instead, there are varying degrees
of solution quality across our programs’ outputs.

We use application-specific fidelity metrics to capture the quality of a program’s output
as perceived by the user. Our fidelity metrics quantify how different a particular output is
relative to a baseline output. (For the experiments in Sections 4.—6., we define the baseline
to be the result obtained from a fault-free execution of a benchmark). Outputs that are
very similar to the baseline have high fidelity, whereas outputs that are very dissimilar have
low fidelity. Whenever possible, we compute fidelity in terms of a benchmark’s qualitative
outputs instead of its numerical outputs. This enables us to capture fidelity of the user’s
qualitative experience, an important correctness consideration for many of our benchmarks.

The last column in Table 1 lists the fidelity metrics we use for our 9 benchmarks. For
the multimedia workloads, we use signal-to-noise ratio (SNR). Specifically, we use segmental
SNR (SNRseg) for G.271-D, and peak SNR (PSNR) for JPEG-D and MPEG-D. For LBP
and SVM-L, we use the percentage change in classification answers, and for GA, we use
the percentage change in thread schedule length (i.e., execution time). For the two data
compression algorithms, we use the compression ratio.? Lastly, vpr’s fidelity metric is
a comnsistency check provided by the code itself. This consistency check first determines
whether a given cell block placement is valid (i.e., doesn’t violate any design rules), and
then computes a cost metric that reflects the degree to which interconnect distance is
minimized. Placements that can’t pass the consistency check are incorrect.

Given the fidelity metrics in Table 1, application-level correctness can be defined by
choosing the minimum fidelity that is “acceptable” to the user: outputs of equal or higher
quality than the minimum fidelity satisfy the user’s requirement and are considered cor-
rect, while outputs of lower quality than the minimum fidelity are considered incorrect. An
important question, then, is how do we determine the minimum fidelity threshold against
which application-level correctness is measured? Unfortunately, minimum fidelity thresh-
olds are extremely user-dependent. In practice, different users may desire different levels
of solution quality (in fact, the same user may be able to live with varying levels of solu-
tion quality under different circumstances), so it is impossible to define one threshold that
applies universally. Instead, users should be allowed to select the threshold that best fits
their correctness requirements. As we will see in Section 4., this provides designers with the
unique opportunity to tradeoff solution quality for fault tolerance, depending on how good
a solution the user needs.

2. Note, due to their lossless nature, compressed outputs that cannot identically reproduce the original
datafile are deemed as incorrect, regardless of the compression ratio.
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While minimum fidelity thresholds are user-dependent, nonetheless, we must choose a
specific set of threshold values for the experiments conducted later in this paper. Section 3.
will discuss how we choose minimum fidelity thresholds for our experiments.

2.3. Limitations

A limitation of application-level correctness is it only considers program outputs visible
to the user. It does not account for other correctness issues unrelated to visible program
outputs. For example, we do not consider real-time issues. Certain errors may not degrade
solution quality appreciably, but they may alter when solutions become available. This
is unacceptable for the correctness of real-time systems. In addition, we do not consider
system-level issues. Errors that do not defeat individual benchmarks may still propagate
to other programs in a multiprogrammed environment, causing them to crash or execute
incorrectly. Lastly, it may still be necessary to provide architecture-level correctness in
cases where architecture state is exposed to the user (e.g., program debugging). In all these
cases, application-level correctness is not strict enough and does not provide the desired
correctness requirements.

3. Experimental Methodology

Having presented our definitions of application-level correctness, we now quantify how
much more fault resilient programs are under application-level correctness compared to
architecture-level correctness. This section discusses the experimental methodology used in
our fault susceptibility study. Later, Section 4. will present the study’s results.

To analyze fault susceptibility, we conduct fault injection experiments [19], [7], [20] to
observe the effects of faults on a CPU under different definitions of correctness. Each of
our fault injection experiments injects a single bit flip into the execution of one of our
benchmarks—i.e., we assume a single event upset, or SEU, fault model. Our approach
closely follows the methodology introduced by Reis et. al. [7]. We initially inject faults into
a detailed architectural simulator that models a modern out-of-order superscalar. After each
fault is injected, we simulate the microarchitecture until the fault completely manifests itself
in architectural state. Then, we checkpoint the simulator’s architectural state, and resume
simulation from the checkpoint using a simple functional simulator. We try to run the
benchmark to completion under the functional CPU model, and assuming the benchmark
doesn’t crash, we evaluate the program’s outputs under both architecture- and application-
level correctness.

In the detailed simulation phase, we use a modified version of the out-of-order processor
model from Simplescalar 3.0 for the PISA instruction set [21], configured with the simulator
settings listed in Table 2. Compared to the original, our modified simulator models rename
registers and issue queues separately from the Reservation Update Unit (RUU). Using this
processor model, we inject faults into three hardware structures: the physical register file,
the fetch queue, and the issue queue (IQ).? Faults injected into a physical register will appear
in architectural state unless the register is idle or belongs to a mispeculated instruction.

3. For both the physical register file and issue queue, our simulator models separate integer and floating
point versions of the structures. However, when injecting faults, we distribute the faults uniformly across
both versions as if they formed a unified structure.
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Processor Parameters

Bandwidth 8-Fetch, 8-Issue, 8-Commit Functional 8-Int Add, 4-Int Mul/Div
Queue size 64-1FQ, 40-Int 1Q, 30-FP 1Q || units 4-FP Add, 2-FP Mul/Div,
128-L.SQ 4-Mem Port

Rename reg/ROB | 128-Int, 128-FP / 256 entry
Branch Predictor Parameters
Branch predictor Hybrid 8192-entry gshare / Meta table | 8192 entries

2048-entry Bimod BTB/RAS | 2048 4-way / 64
Memory Parameters
IL1 config 64 KB, 64 byte block, UL2 config | 1 MB, 64 byte block,
2 way, 1 cycle lat 4 way 20 cycle lat
DL1 config 64 KB, 64 byte block, Mem config | 300 cycle first chunk,
2 way, 1 cycle lat 6 cycle inter chunk

Table 2: Parameter settings for the detailed architectural model into which we inject faults.

For the fetch queue, we allow faults to corrupt instruction bits, including opcodes, register
addresses, and immediate specifiers. These faults manifest in architectural state as long as
the injected instruction is not mispeculated. Lastly, for the IQ, we model 6 fields per entry:
instruction opcode, 3 register tags (2 source and 1 destination), an immediate specifier,
and a PC value. Like the fetch queue, faults in the IQ appear in architectural state for
instructions that are not mispeculated. Corruptions to the IQ opcode and immediate fields
behave similarly to corresponding corruptions in the fetch queue. Corruptions to the register
tags alter instruction dependences, and corruptions to the PC value affect branch target
addresses.

When simulating in detailed mode, two issues affect the collection of checkpoints for
subsequent functional simulation. First, not all fault injections require functional simulation
to program completion. Some faults are masked by the microarchitecture, and do not
propagate to architectural state. Other faults incur exceptions or lockups. (We rely on
a watchdog timer to detect lockups). In these cases, we simply record the outcome, and
skip the functional simulation phase. Second, faults in the out-of-order portion of the
processor pipeline (i.e., the physical register file and 1Q) can manifest in architectural state
in an imprecise manner. For example, a corrupted register value may propagate to some
instructions (those that haven’t issued yet) but not to others (those that have already
issued). Our detailed simulator records these out-of-order effects. Then, when simulating
the initial instructions in functional mode (i.e., those that were in-flight at the time of the
fault), we propagate the injected fault to exactly the same instructions that were affected
during out-of-order simulation.

Tables 3 and 4 present detailed information about our fault injection experiments for
each of our benchmarks described in Section 2.. In Table 3, the column labeled “Input”
specifies the input dataset used for each benchmark, and the column labeled “Exec Time”
reports each benchmark’s measured execution time in cycles on our detailed out-of-order
simulator. We inject faults only after program initialization, so “Exec Time” does not
include the benchmarks’ initialization phase. After program initialization, we run each
benchmark to completion in our detailed simulator, performing all fault injections and
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Bench Input Exec Time | Interval
G.721-D clinton.pcm 77643471 7000
JPEG-D | lena.ppm 44520776 7000
MPEG-D | meil6v2.m2v 40457756 7000
LBP WebKB [16] 2175526139 | 1000000
SVM-L ala [22] 53981768 7000
GA r16-0.1.in [18§] 127490411 15000
164.gzip input.compress 93396309 15000
256.bzip2 | input.compress 732651712 250000
175.vpr test 800450837 250000

Table 3: Benchmarks. “Exec Time” reports execution time in cycles. “Interval” reports
the average time between fault injections.

Fault Injections Architecturally Visible Faults
Bench Regfile | Fetch | Issue Regfile Fetch Issue
G.721-D 10467 | 10449 | 10440 483 (0.046) 581 (0.056) | 1183 (0.113)
JPEG-D 5950 5998 5922 542 (0.091) 4341 (0.724) | 1483 (0.250)
MPEG-D 5413 5423 4506 713 (0.132) 434 (0.080) 803 (0.178)
LBP 2198 2164 2176 || 1317 (0.599) 946 (0.437) 589 (0.271)
SVM-L 7225 7176 7154 || 1138 (0.158) 2327 (0.324) | 1564 (0.219)
GA 8491 8410 8471 479 (0.056) 626 (0.074) | 1352 (0.160)
164.gzip 6693 6550 6654 467 (0.070) 829 (0.127) 861 (0.129)
256.bzip2 2941 2907 2903 264 (0.090) 1559 (0.536) 722 (0.249)
175.vpr 3177 3152 3195 968 (0.305) 166 (0.053) 330 (0.103)
Total 52555 | 52229 | 51421 || 6371 (0.121) | 11809 (0.226) | 8887 (0.173)

Table 4: Fault injection statistics. The “Fault Injections” columns report the total number
of faults injected into the physical register file, fetch buffer, and issue queue, respec-
tively. The “Architecturally Visible Faults” columns report the number of injected
faults in these three hardware structures that become architecturally visible.

checkpoints for a single hardware structure in the same run. We perform 3 such injection
runs on each benchmark to inject faults into the 3 hardware structures (i.e., physical register
file, fetch queue, and 1Q). In each run, faults are randomly injected into a single hardware
structure one after another using a uniformly distributed inter-fault arrival time.

It is crucial to limit the total number of fault injections since each fault potentially
requires functional simulation to program completion. Our methodology limits the number
of injected faults in two ways. First, we choose program inputs that do not result in
exceedingly long execution times. Second, we set the inter-fault arrival time based on each
benchmark’s execution time. We use larger arrival times for longer-running benchmarks,
thus reducing the number of injected faults for benchmarks with longer execution times.
The column labeled “Interval” in Table 3 reports the inter-fault arrival time used for each
benchmark. In Table 4, the three columns labeled “Fault Injections” report the total number
of injected faults for the physical register file, fetch buffer, and issue queue. Across all three
hardware structures and all benchmarks, our fault injection campaign performs 156,205
fault injections.
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In addition to how we inject faults, another important methodology issue is what
standard do we use to assess application-level correctness? As discussed in Section 2.2.,
application-level correctness is defined by the minimum fidelity threshold that is “accept-
able” to the user. In our experiments, we define two fidelity thresholds for this purpose:
“high” and “good.” The high threshold corresponds to program outputs of extremely high
quality, with no noticeable solution quality degradation compared to a fault-free execution.
The good threshold corresponds to program outputs with only slightly (barely noticeable)
degraded solution quality compared to a fault-free execution. Although we define two sep-
arate thresholds, in our analysis, we consider any program output that meets the good
threshold as being correct under application-level correctness (i.e., the good threshold is
our minimum fidelity threshold).

We quantify the high and good thresholds for each fidelity metric in Table 1 as follows.
For the SNRseg and PSNR metrics associated with our multimedia benchmarks, we define
high and good outputs to be greater than 90dB and between 50dB and 90dB, respectively,
when compared to outputs from fault-free execution. We aurally and visually compared
faulty and fault-free outputs to select these thresholds so that they conform qualitatively
to the high and good standards described above. Also, we confirmed quantitatively that
the good threshold is equal to or better than what is accepted by the signal processing
community as constituting a “barely noticeable” difference [23], [24]. For all other fidelity
metrics, we define high and good outputs to be within 1% and 5%, respectively, of the
program outputs obtained via fault-free execution. Unfortunately, we were unable to find
any standards in the literature against which to compare these thresholds, so we chose
them to be conservative. For our Al benchmarks, the fault-free outputs themselves are
erroneous (the AI benchmarks only compute approximate solutions). In all cases, the fault-
free outputs are off by 15% or more compared to perfect solutions obtained off-line. Hence,
1% and 5% represent small additional errors on top of the benchmarks’ baseline errors.
For the SPEC benchmarks, there is no quantitative justification for our high and good
thresholds; we chose 1% and 5% because we believe these represent small increases in file
size (for gzip and bzip) and average wire length (for vpr).

4. Fault Susceptibility

This section discusses our fault susceptibility study. First, Section 4.1. presents the fault
injection results. Then, Section 4.2. analyzes the sources of increased error resilience at the
application level.

4.1. Fault Injection Results

Our first result is only a portion of fault injections manifest themselves in architectural
state because many faults are masked by the microarchitecture. Microarchitecture-level
masking [4] arises due to faults that attack idle hardware resources, or hardware resources
occupied by mispeculated instructions. The three columns in Table 4 labeled “Architec-
turally Visible Faults” report the number of faults injected into the physical register file,
fetch queue, and 1Q), respectively, that become architecturally visible. In parentheses, we
report the same data as a fraction of the total faults injected into the hardware structure
(i.e., from the “Fault Injections” columns). As Table 4 shows, the degree of masking varies

10
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Figure 1: Program outcomes breakdown for architecturally visible fault injections: cor-
rect at the architecture level (“Architecture”), correct at the application level
(“Application-High” and “Application-Good”), unacceptable (“Incorrect”), ex-
ception or program lockup (“Crash”), and early program exit (“Terminate”).

considerably across different benchmarks and hardware structures. But on average, only
17.3% of injected faults (27,067 out of 156,205) become architecturally visible, with the fetch
queue exhibiting the most fault sensitivity (22.6%) and the register file and IQ exhibiting
less sensitivity (12.1% and 17.3%, respectively). Faults that are masked by the microar-
chitecture produce correct program outputs under both architecture- and application-level
correctness.

Next, we examine the architecturally visible faults in more detail. Figure 1 breaks
down the outcome of all architecturally visible fault injections when they are simulated to
program completion. For each benchmark, we report the fault injections into the physical
register file, fetch queue, and IQ separately in a group of 3 bars labeled “R,” “F,” and “I,”
respectively. Each bar contains 6 categories. The first category, labeled “Architecture,”
indicates the program outputs that pass architecture-level correctness (these outputs are
also correct at the application level). The next two categories, labeled “Application-High”
and “Application-Good,” indicate the additional program outputs that are acceptable under
application-level correctness only, assuming the “high” and “good” thresholds described in
Section 3.. The category labeled “Incorrect” indicate outcomes that are either invalid or
unacceptable under both architecture- and application-level correctness. Finally, the last
two categories indicate experiments that fail to complete during functional simulation due
to an exception or a program lockup (labeled “Crash”) or early program exit with an error
(labeled “Terminate”). The last 3 groups of bars in Figure 1 report the average breakdowns
for the multimedia, AI, and SPEC benchmarks, respectively.

Looking at Figure 1, we see a large portion of architecturally visible faults lead to correct
program outputs under architecture-level correctness (i.e., the “Architecture” components).
The last 3 groups of bars in Figure 1 show architecture-level correctness is achieved in 50.4%
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to 60.1% of program outputs on average across the 3 hardware structures for the multime-
dia and SPEC benchmarks, and in 61.0% to 68.8% on average for the AI benchmarks.
Similar to microarchitecture-level masking, many fault injections attack architectural state
unnecessary for maintaining numerical integrity in our computations, and hence, become
architecturally masked [4]. In our benchmarks, the primary source of architecture-level
masking is logical and inequality instructions. These instructions rarely change their out-
puts despite corruptions to their input operands; thus, they are highly resilient to faults.
Other (less significant) sources of architecture-level masking include dynamically dead code,
NOP instructions, and Y-branches [25].

The remaining fault injections that are not masked at the microarchitecture or archi-
tecture levels do not produce numerically correct program outputs. These fault outcomes
have traditionally been considered incorrect under architecture-level correctness. Across all
benchmarks and all hardware structures, 41.2% of architecturally visible fault injections on
average are architecturally incorrect. However, we find a significant portion of architec-
turally incorrect outcomes produce high-quality solutions. This is particularly true for the
multimedia and AI benchmarks, our soft computations. As the first group of average bars
in Figure 1 show, 27.3%, 26.1%, and 23.3% of all architecturally visible faults for multi-
media benchmarks occurring in the physical register file, fetch queue, and 1Q, respectively,
produce program outputs with either high or good fidelity (i.e., the “Application-High” or
“Application-Good” components). In other words, 55.0%, 54.8%, and 56.8% of the archi-
tecturally incorrect faults (i.e., excluding the “Architecture” components) are acceptable
from the user’s standpoint and achieve application-level correctness. As the second group
of average bars show, 12.6%, 13.2%, and 11.4% of all architecturally visible faults for Al
benchmarks occurring in the same three hardware structures, respectively, produce high or
good fidelity program outputs as well. In other words, 40.4%, 33.8%, and 34.0% of architec-
turally incorrect faults are correct at the application level. Overall, 45.8% of architecturally
incorrect faults in our soft computations achieve application-level correctness.

In addition to soft computations, we find the SPEC benchmarks also exhibit enhanced
fault resilience at the application level. As the last group of bars in Figure 1 shows, 11.7%,
6.8%, and 4.4% of all faults for the SPEC benchmarks occurring in the physical register file,
fetch queue, and 1Q), respectively, produce program outputs with either high or good fidelity.
In other words, 26.2%, 15.5%, and 11.1% of architecturally incorrect faults are correct at the
application level. These gains are much more modest than those for our multimedia and
Al benchmarks. However, we believe the fact that application-level correctness provides
any additional fault resilience in SPEC is a positive result given these benchmarks are
traditionally considered as exact computations.

4.2. Error Resilience Analysis

The majority of faults leading to the “Application-High” and “Application-Good” categories
in Figure 1 occur on computations related to soft outputs. As discussed in Section 2.1.,
such computations are error resilient since they still have a high likelihood of generating
acceptable answers in the face of faults. For example, JPEG-D and MPEG-D perform
inverse DCT and quantization, while G.721-D performs adaptive prediction and quantiza-
tion. Even in the absence of faults, these computations incur small errors due to rounding
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and their lossy nature. To such computations, faults act like additional errors, and are
often tolerable. Compared to the multimedia workloads, LBP and SVM-L do not perform
lossy operations. However, they are still highly error resilient due to the inexact nature
of computing classification answers, as already discussed in Section 2.1.. While most soft
computations are highly error resilient, one exception is GA. Upon closer examination, we
found GA spends most of its time evaluating an objective function that reflects the cost of
a given thread schedule. While GA’s heuristic nature affords soft outputs (see Section 2.1.),
unfortunately, its objective function evaluations are not soft computations, thus reducing
the benefits of application-level correctness.

Our study also shows the SPEC benchmarks can tolerate faults. Gzip and bzip2’s
program outputs are soft due to flexibility in how datafiles can be compressed. We found
certain faults cause these compression algorithms to emit different output tokens compared
to a fault-free execution. While these output tokens do not achieve as high a compression
ratio, they still correctly encode their corresponding input tokens. Hence, a numerically
different (slightly larger) compressed file is created, but the original file can still be recovered
via decompression. In vpr, as already discussed in Section 2.1., the source of soft program
outputs is multiple valid cell block placements. Some of our fault injections cause vpr to
produce these different cell block placements, and are thus acceptable.

5. Lightweight Fault Recovery

Section 4. demonstrates many architecturally incorrect faults are acceptable when evalu-
ated at the application level. However, even after considering application-level correctness,
a large number of faults still lead to incorrect program outcomes—i.e., the “Incorrect,”
“Crash,” and “Terminate” components in Figure 1. Of these, by far the most significant
is the “Crash” component. Across all experiments, crashes account for 80.8% of faults on
average that are incorrect at both the architecture and application levels.

Addressing crashes requires detecting the corresponding faults, and recovering from
them. Since crashes consist of exceptions and program lockups, detection is straight-
forward: exceptions are intercepted by the operating system? while lockups can be flagged
by a CPU watchdog timer. No additional hardware support nor runtime overhead need be
incurred for detection. Recovery, on the other hand, requires checkpointing, a heavyweight
operation that can incur significant runtime overhead.

In the remainder of this paper, we exploit application-level correctness to develop
lightweight fault recovery techniques. Section 5.1. begins by introducing selective check-
pointing of hard state, the main idea behind lightweight fault recovery. Then, Section 5.2.
presents stack recovery, an extremely lightweight fault recovery technique, and Section 5.3.
evaluates its performance. Later, Section 6. will extend stack recovery to improve its fault
protection.

4. We assume all terminating exceptions are due to soft errors (i.e., programs are assumed to be bug free),
so we initiate recovery for all of them. In addition, we assume the OS will not trigger recovery for
non-fatal exceptions, but instead will process them normally.
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5.1. Selective Hard State Checkpointing

Conventional fault recovery techniques use checkpointing to protect all program state. This
comprehensive approach enables recovery to a numerically correct point in the program
prior to any fault, thus unrolling the memory corruptions associated with the fault. While
this is necessary for architecture-level correctness, it is overly conservative for application-
level correctness. Under application-level correctness, fault recovery need only a). restart
the program prior to the fault, and b). permit the program to complete with acceptable
outputs; numerical correctness is not necessary. The key question is what minimum state
must be protected to enable recovery for application-level correctness?

As discussed throughout this paper, faults that attack computations associated with soft
program outputs can be tolerable from the user’s standpoint. Not only are such computa-
tions error resilient, but the memory storing the soft program outputs these computations
eventually corrupt are also error resilient. We refer to such memory as a program’s “soft
state.” Moreover, we distinguish this soft state from all other program state, which we refer
to as a program’s “hard state.”

Because soft state is highly resilient to data corruptions, in most cases, it can be omit-
ted from checkpoints without sacrificing application-level correctness. On the other hand,
using checkpoints to protect a program’s hard state is necessary to permit program restart
and completion after a fault. Hence, fault recovery can be made lighter weight by only
checkpointing a program’s hard state. By omitting soft state from checkpoints, checkpoint
size and runtime overhead can be reduced.

5.2. Stack Recovery

To enable selective checkpointing, it is necessary to distinguish a program’s hard state from
its soft state. In general, this is a challenging task, but for one specific case, it is straight
forward. As discussed in Section 5.1., one requirement of hard state checkpoints is to permit
restart of the program prior to the fault. We examined several program crashes, and found
in most cases program restart can occur simply with a valid program counter (PC) plus the
correct stack state at the associated program control point. Hence, an extremely naive (but
effective) lightweight recovery technique is to periodically checkpoint the PC, architected
register file, and program stack. While the register file and stack typically contain a mixture
of both hard and soft state, it is unnecessary to further distinguish the hard state in these
structures given the small amounts of data involved.

We call this simple technique stack recovery. Upon a crash, stack recovery restarts the
program at the nearest checkpoint by rolling back the PC, register file, and stack only—
stack recovery does not touch the program text, static data, or heap during rollback. To
determine when checkpoints are taken, stack recovery identifies the main controlling loops
in the benchmarks (usually the outer loops associated with major program phases), and
instruments checkpointing at the top of each loop iteration. In this paper, we instrument
the checkpoint calls manually, though it should be possible to automate this using compiler
techniques [26]. Lastly, while checkpointing only needs to copy the state modified since the
last checkpoint, stack recovery takes full checkpoints each time. This simple approach does
not introduce significant overhead due to the very small size of the checkpoints.
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Bench Check | Interval Size Bench | Check | Interval Size
G.721-D 261 1003622 566 (1.804%) || GA 300 | 1108510 | 1282 (0.003%)
JPEG-D 59 503137 | 3360 (0.397%) || gzip 252 964376 | 1108 (0.036%)
MPEG-D 60 2034834 | 664 (0.092%) || bzip2 1529 | 2019708 | 3462 (0.036%)
LBP 50 | 47197236 | 700 (0.012%) || vpr 2995 505182 | 3720 (1.869%)
SVM-L 430 404591 | 1944 (0.195%)

Table 5: Stack checkpoint statistics. The columns labeled “Check,” “Interval,” and “Size”
report total checkpoints taken, average interval size (in instructions), and average
checkpoint size (in bytes).

Notice, stack recovery cannot successfully recover all crashes because it does not check-
point any hard state outside of the PC, register file, and stack. Fortunately, as our results
will show, stack recovery can still recover a significant number of crashes. In Section 6., we
will revisit the topic of distinguishing a program’s hard and soft state, and perform more
comprehensive checkpointing of the hard state.

5.3. Stack Recovery Evaluation

We evaluate stack recovery using the functional simulator from our two-phase simulation
methodology (see Section 3.). First, we run checkpoint-instrumented versions of our bench-
marks on the functional simulator once to acquire all the checkpoints. Table 5 reports
statistics from these checkpoint runs. The columns labeled “Check,” “Interval,” and “Size”
report the total number of checkpoints, the average number of instructions between check-
points (excluding instrumentation code), and the average checkpoint size, respectively. In
parenthesis, we also report the average checkpoint size as a fraction of the total program
size. Because we only checkpoint the PC, register file, and stack, our checkpoints are ex-
tremely lightweight. On average, our checkpoints are roughly 2 KB in size, with consecutive
checkpoints separated by 400,000 instructions or more. Since we acquire our checkpoints on
the functional simulator, we have not measured the actual runtime cost of our checkpoints;
however, we estimate a 1% runtime overhead at worst.

After acquiring all the checkpoints, we perform recovery experiments using stack re-
covery. For every crash outcome in Figure 1, we rollback to the nearest checkpoint, as
described in Section 5.2., and restart execution in our functional simulator. Then, we try
to run the benchmark to completion, and assuming the benchmark doesn’t crash again, we
evaluate the program’s outputs under both architecture- and application-level correctness,
just as we did in Section 4.. Figure 2 breaks down the outcome of our recovery experiments.
For each benchmark, we report the recovery outcome for crashes from the physical register
file, fetch queue, and IQ fault injections separately in a group of 3 bars labeled “R,” “F,”
and “I,” respectively. Each bar is broken down into the same categories as Figure 1 minus
the “Terminate” category (none of our recoveries end in early program exit). The last 3
groups of bars in Figure 2 report the average breakdowns for the multimedia, Al, and SPEC
benchmarks, respectively.

Looking at Figure 2, we see some recoveries lead to correct program outputs even un-
der architecture-level correctness (i.e., the “Architecture” components). The 3 groups of
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Figure 2: Program outcomes breakdown for recovery of crashes using stack recovery. The
data is presented in a similar fashion to Figure 1.

average bars in Figure 2 show architecture-level correctness is achieved in 3.8% to 17.7%
of recoveries on average for the multimedia and AI benchmarks, and in 22.5% to 31.0% of
recoveries on average for the SPEC benchmarks. In these cases, there are no corruptions to
uncheckpointed state between the rollback checkpoint and the crash; hence, stack recovery
can enable program completion with numerically perfect outputs.

However, Figure 2 also shows that under application-level correctness, a significant num-
ber of additional crashes can be recovered (i.e., the “Application-High” and “Application-
Good” components), especially for soft computations. The first 2 groups of average bars in
Figure 2 show application-level correctness permits an additional 34.8% to 73.8% of recov-
eries on average to be correct for the multimedia and AI benchmarks. Averaged across all
hardware structures, an additional 52.6% of recoveries are correct under application-level
correctness for the soft computations. G.721-D, LBP, and GA respond particularly well to
stack recovery, with as many as 90% of crash recoveries achieving application-level correct-
ness. In combination with numerically correct recoveries, these additional application-level
correct recoveries allow 66.3% of all crashes on average to complete with acceptable results
for soft computations. Furthermore, when combined with the results from Figure 1, our
stack recovery technique allows 92.4% of all architecturally visible fault injections for soft
computations to complete with correct outputs at either the architecture or application
level.

Compared to soft computations, a much smaller number of crashes are recoverable for
the SPEC benchmarks. The last group of average bars in Figure 2 show application-level
correctness provides only 2.5% more correct outputs on top of the numerically correct re-
coveries. Nonetheless, when combined with the numerically perfect outputs, stack recovery
still permits 28.7% of all crashes in SPEC on average to complete with acceptable results.
And in combination with the results from Figure 1, stack recovery allows 71.2% of all archi-
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tecturally visible fault injections for SPEC to complete with correct outputs at either the
architecture or application level.

While stack recovery addresses a significant number of crashes, Figure 2 also shows a
drawback. As already mentioned in Section 5.1., stack recovery cannot recover all crashes
since its checkpoints are not comprehensive. The last 3 groups of average bars in Figure 2
show our technique fails to recover 45.1%, 22.2%, and 71.3% of crashes for the multimedia,
Al, and SPEC benchmarks, respectively. Many of these failed recoveries lead to crashes; in
these cases, we're no worse off than we were without stack recovery. However, some failed
recoveries complete and produce incorrect program outputs. The last 3 groups of average
bars in Figure 2 show our technique leads to incorrect outcomes in 12.4%, 11.0%, and 29.6%
of recoveries for the multimedia, AIl, and SPEC benchmarks, respectively. Unfortunately,
incorrect outcomes are potentially more problematic than crashes since they are harder to
detect. For the “Incorrect” cases in Figure 2, stack recovery is arguably worse than no
recovery at all.

Although our recovery mechanism leads to some incorrect outputs, the incorrect cases
are not that bad. We found for soft computations (i.e., multimedia and AI), a significant
number of the incorrect outcomes—between 80% and 90%-still exhibit good solution quality,
and fall short of application-level correctness by only a small amount. In addition, for vpr,
almost all the “Incorrect” cases are invalid solutions that are caught by the consistency
check (as described in Section 2.2.). Hence, they do not go undetected. Nevertheless, the
successful recoveries provided by stack recovery come at the expense of a modest increase
in the number of incorrect outcomes.

6. Hard State Recovery

We now present our second lightweight fault recovery technique, hard state recovery, that
extends stack recovery to provide higher fault protection. Like stack recovery, hard state
recovery also performs selective hard state checkpointing. However, instead of only check-
pointing the PC, register file, and stack, hard state recovery checkpoints hard state across
the entire program. The following presents our technique in 3 parts. First, Section 6.1.
discusses issues associated with checkpointing hard state program-wide. Then, Section 6.2.
describes how we identify hard state to drive the selective checkpointing. Finally, Sec-
tion 6.3. evaluates our technique.

6.1. Program-Wide Hard State Checkpointing

Similar to stack recovery, hard state recovery acquires full checkpoints of the PC, register
file, and stack. While full checkpoints are fine for these small structures, they are impractical
for other parts of a program (e.g., static data and heap) given the potentially large amounts
of data involved. For these other memory regions, hard state recovery employs incremental
checkpointing [27]. In incremental checkpointing, a list of objects modified since the last
checkpoint is maintained. At checkpoint time, only the dirty objects are checkpointed, thus
eliminating redundant copies. After each checkpoint, the modified list is cleared to initiate
tracking of dirty objects for the next checkpoint.

Due to fragmentation, the granularity of dirty object tracking impacts the size of incre-
mental checkpoints. For simplicity, modifications can be tracked at page granularity, thus
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Bench Soft Program State
G.721D N/A
JPEG-D | cinfo->coef->MCU_buffer[], cinfo->upsample]|
MPEG-D | backward reference_frame|[], forward_reference_framel[], axframe[],
substitute_framel[], llframe0][], llframel(], lltmp]]
LBP nodes|].belief[], nodes|].potential[], nodes[].messages]]|
SVM-L a_fullset[], xi_fullset[], lin[], learn_parm->svm_cost, model->alpha,
last_suboptimal_at, selcrit, aicache, qp, qp.opt_ce, qp.opt_ce0, qp.opt_g,
qp-opt-g0, gqp.optxinit, gp.opt_low, gp.opt_up, weights
GA ga_NewPop][].chrom[], ga_NewPop][].schedule(],
ga_OldPop][].chrom[], ga_-OldPop|].schedule]], A[]

Table 6: Data structures that store soft program state in the multimedia and AI bench-
marks.

leveraging the hardware in TLBs for tracking dirty pages.” While this is cost effective, it
incurs some overhead since most data objects are smaller than a page. Section 6.3. will
quantify the impact of such fragmentation effects.

In addition to incremental checkpoints, another issue with hard state recovery is the hard
state itself must be identified program-wide. Unfortunately, there is no simple heuristic-like
checkpoint the stack—that can automatically identify all the hard state in a program. In
this work, we identify hard state manually via code inspection. While this is impractical
for most programmers, it permits us to conduct a preliminary study of hard state recovery,
and quantify the potential benefits it can provide. Further research is needed to determine
whether these benefits can be achieved in a more automated fashion. The next section
describes how we acquire the hard state information.

6.2. Hard State Information

Because we adopt a manual approach to identify hard state, we do not expect our analysis to
be complete, especially given the large size of some of our benchmarks. Hence, rather than
identify hard state directly, we instead identify soft state, and assume all other program
state is hard. That way, incompleteness in our analysis impacts performance (less soft state
omitted from checkpoints) rather than correctness (hard state omitted from checkpoints).
Also, we only analyze the soft computations since the SPEC benchmarks provide very little
opportunities for selective checkpointing.

For the soft computations, we considered the soft program outputs discussed in Sec-
tion 2.1., and inspected the code to identify the data structures associated with these soft
outputs. We only inspected heap data structures since this is the main source of soft pro-
gram state across our benchmarks. Table 6 lists the data structures we identified for each
benchmark. For the multimedia benchmarks, the soft state are the arrays used to compute
the decompressed datafiles listed in Table 1. Specifically, we identified the arrays in JPEG-
D associated with its DCT computation, and in MPEG-D, we identified several arrays that
store frame buffer data. (G.721-D does not contain heap data structures due to its very

5. Hard state recovery requires a separate dirty bit in the TLB since we must clear the bits after each
checkpoint. Providing a separate dirty bit prevents interference with the operating system’s ability to
track dirty pages for virtual memory.
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small memory footprint, so we did not identify any soft state for this benchmark). For the
Al benchmarks, the soft state consists of data structures associated with the benchmarks’
soft outputs listed in Table 1. In particular, we identified the arrays in LBP associated with
its message-passing computation; in SVM-L, we identified several data structures associated
with its quadratic programming algorithm; and in GA, we identified the arrays that store
each population’s chromosomes as well as the thread schedules the chromosomes encode.

Given the data structures listed in Table 6, we then identified the store instructions
from each benchmark that write to these data structures. We refer to these as a program’s
“soft stores.” We marked all soft store instructions in our benchmarks’ binaries so they
can be identified at runtime. As we will explain in the next section, this enables our hard
state recovery technique to track dirty pages containing only soft state, and omit such dirty
pages from checkpoints.b

6.3. Hard State Recovery Evaluation

Our evaluation of hard state recovery considers both runtime cost as well as recovery rate.
To evaluate runtime cost, we modified our detailed out-of-order simulator from Section 3. to
support incremental checkpointing. As described in Section 6.1., incremental checkpointing
uses the TLB and OS to track dirty pages. Since our simulator does not model TLBs nor
the OS, we track dirty pages in the simulator instead. For every executed store instruction,
our simulator observes which page the store writes to (assuming a 4 KB page size). On
a page’s first write, the simulator appends the corresponding page number to a modified
page list. So, at any given time, this modified page list specifies the state that must be
incrementally checkpointed. (Although updates to the modified page list are not simulated,
we do not expect this to impact our results. In an actual system, these updates would
occur during TLB faults. Given the relatively low frequency of TLB faults and the low
overhead for manipulating the modified page list in the TLB fault handler, we believe this
bookkeeping overhead is negligible.)

When a checkpoint is taken, the modified page list is traversed and each dirty page
is checkpointed using a copy function. (We instrument checkpoints in the same program
loops identified for stack recovery, as described in Section 5.2.). We also checkpoint the PC,
register file, and stack using the same copy function. While updates to the modified page
list are performed in the simulator, the checkpoint copy function is performed on-line and
fully simulated. In particular, we simulate all processor loads and stores executed within
the copy function, including their associated cache misses. On average, we find it takes
1,560 cycles to checkpoint a single 4 KB page.

In addition to incremental checkpointing, we also modified our simulator to support
soft store instructions. These instructions are created from unused opcodes in the PISA
instruction set, and then inserted into our benchmarks’ binaries everytime we determine a
store writes to soft program state, as described in Section 6.2.. At runtime, our simulator
recognizes the soft store instructions, and does not update the modified page list for such

6. It may be possible for some store instructions, particularly those associated with indirect writes, to store
to both hard and soft state at different times in a program. Marking such “partially soft stores” as
soft can compromise fault resilience since it can cause some hard state to be left out of checkpoints.
Fortunately, we did not find any partially soft stores associated with the data structures we identified in
Table 6.
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Bench Dirty Pages | Dirty Hard Pages | Dirty Blocks | Dirty Hard Blocks
G.721-D 3 3 (100%) 13 13 (100%)
JPEG-D 14 7 (50%) 369 146 (40.0%)
MPEG-D 8 2 (25%) 216 20 (9.3%)
LBP 1444 1 (0.07%) 33633 1 (0.003%)
SVM-L 34 19  (55.9%) 578 359  (62.1%)
GA 46 38 (82.6%) 349 46 (13.2%)

Table 7: Selective hard state checkpoint statistics. The last 4 columns report each bench-
marks’ dirty pages, dirty pages containing hard data, dirty memory blocks, and
dirty memory blocks containing hard data. The percentages indicate the relative
size of selective hard state checkpoints compared to incremental checkpoints.

stores even if they are the first write to a given page. Hence, dirty pages that are written
solely by soft stores are not checkpointed, thus facilitating selective hard state checkpointing.

6.3.1. Runtime Overhead

As in Section 5.3., we first run checkpoint-instrumented versions of our benchmarks to
acquire all the checkpoints. But this time, instead of running them on our functional
simulator, we run them on our detailed out-of-order simulator to measure the checkpointing
cost. And instead of running our benchmarks only once, we run each of them twice: first
to acquire checkpoints assuming no soft store instructions (i.e., conventional incremental
checkpoints), and then to acquire checkpoints with soft store instructions (i.e., selective hard
state checkpoints). For our checkpoint runs, we use the same checkpoint instrumentation
described in Section 5.3., so the number of checkpoints acquired as well as the number of
instructions between checkpoints is the same as in Table 5.

Table 7 shows the size of our checkpoints. The columns labeled “Dirty Pages” and “Dirty
Hard Pages” report the average number of 4 KB pages in each conventional incremental
checkpoint and selective hard state checkpoint, respectively, for the soft computations. As
Table 7 shows, our selective hard state checkpoints contain 11.7 pages on average, or 46.7
KB, so they are larger than the stack checkpoints in Table 5. However, compared to
conventional incremental checkpoints, our selective hard state checkpoints are 48% smaller
on average. This demonstrates omitting soft state from checkpoints does significantly reduce
their size.

Figure 3 shows the performance of our checkpointing techniques. In particular, we
report the execution time of conventional incremental checkpointing and selective hard state
checkpointing normalized to no checkpointing. The last group of bars reports the average
across all the benchmarks. As Figure 3 shows, selective hard state checkpointing incurs 3.3%
overhead on average over no checkpointing. This overhead is worse than stack recovery,
which we estimate to be no more than 1% (see Section 5.3.). However, Figure 3 also shows
conventional incremental checkpointing incurs a much higher overhead-10.5% on average.
This demonstrates the reduced size of selective hard state checkpoints does translate into
tangible performance benefits compared to conventional incremental checkpointing.
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Figure 3: Normalized execution time of the original code, and the original code instru-
mented with incremental checkpointing and selective hard state checkpointing.

As discussed in Section 6.1., acquiring checkpoints at page granularity can suffer frag-
mentation. To quantify the impact of this problem, we modified our simulator to track
and checkpoint dirty objects at cache block granularity (64 bytes). In Table 7, the columns
labeled “Dirty Blocks” and “Dirty Hard Blocks” report the average number of cache blocks
checkpointed under conventional incremental checkpointing and selective hard state check-
pointing, respectively. Comparing these two columns, we see the selective hard state check-
points are 63% smaller on average than the conventional incremental checkpoints. These
results show an even greater potential exists for selective hard state checkpointing to reduce
checkpoint size if checkpoints can be acquired at finer granularity.

6.3.2. Recovery Rate

After acquiring all the checkpoints, we perform recovery experiments using hard state re-
covery (we will discuss recovery using conventional incremental checkpointing at the end of
this section). These experiments are performed on the functional simulator from Section 3.
and are identical to the experiments in Section 5.3., except we use the selective hard state
checkpoints for recovery instead of the stack checkpoints. Figure 4 breaks down the out-
come of our recovery experiments. The format of Figure 4 is identical to Figure 2, except
Figure 4 only evaluates the soft computations.

As in Figure 2, Figure 4 shows some recoveries lead to architecturally correct program
outputs (i.e., the “Architecture” components). Averaged across all hardware structures,
architecture-level correctness is achieved in 48.3% and 31.3% of recoveries for the multime-
dia and Al benchmarks, respectively. Figure 4 also shows a number of additional crashes can
be recovered to application-level correctness (i.e., the “Application-High” and “Application-
Good” components). Averaged across all hardware structures, application-level correctness
is achieved in 33.0% and 66.7% of recoveries for the multimedia and AI benchmarks, respec-
tively. In combination with numerically correct recoveries, these additional application-level
correct recoveries allow 81.3% and 98.0% of all crashes for the multimedia and AT bench-
marks, respectively, to complete with acceptable results. Furthermore, when combined with
the results from Figure 1, hard state recovery allows 96.4% of all architecturally visible fault
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Figure 4: Program outcomes breakdown for recovery of crashes using hard state recovery.
The data is presented in a similar fashion to Figures 1 and 2

injections for soft computations to complete with correct outputs at either the architecture
or application level.

These results show hard state recovery is highly effective at recovering crashes, much
more so than stack recovery. Comparing Figures 2 and 4, we see hard state recovery achieves
application-level correctness for 89.7% of crashes averaged across all soft computations
compared to only 66.3% for stack recovery. It is important to note, however, this increased
fault resilience comes at the expense of some performance, as demonstrated in Section 6.3.1..
Hence, rather than claim hard state recovery is superior to stack recovery or vice versa, it
is more accurate to say the two techniques simply achieve a different tradeoff between
performance and recovery rate.

While hard state recovery is effective, it is not perfect. In particular, Figure 4 shows a
very small number of recoveries (1.1% or less for all benchmarks) result in a second crash.
For these rare cases, the fault and its recovery straddle a checkpoint; hence, the check-
point itself is corrupted (more on this in a moment). In addition to a very small number
of crashes, some recoveries lead to incorrect outcomes. Averaged over all hardware struc-
tures, Figure 4 shows 18.7% and 1.1% of recoveries for the multimedia and AI benchmarks,
respectively, result in incorrect outcomes. Fortunately, similar to Figure 2, most of these
incorrect outcomes—between 80% and 90%-still exhibit good solution quality, and fall short
of application-level correctness by only a small amount. Nevertheless, this result shows com-
prehensive checkpointing of hard state alone does not guarantee correct execution. Faults
to unprotected soft state can, in a few cases, degrade solution quality sufficiently to make
the result unacceptable. Hence, by omitting soft state from checkpoints, hard state recovery
cannot recover all crashes successfully, even under application-level correctness.

Compared to hard state recovery (and stack recovery), recovery using conventional in-
cremental checkpointing will achieve a higher recovery rate as well as recovery to higher
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G.721-D | JPEG-D | MPEG-D | LBP | SVM-L | GA
Total Crashes 569 1147 304 174 891 806
Straddle 0 2 0 1 10 2
% Straddle 0% 0.2% 0% | 0.6% 1.1% | 0.2%

Table 8: Results for the number of crashes in which the fault and crash straddle a check-
point.

solution quality. In this work, we do not perform recovery experiments for conventional
incremental checkpointing. However, because incremental checkpointing checkpoints all
modified state, it is guaranteed to recover a crash to architecture-level correctness unless
the checkpoint itself is corrupted. As described above, this can occur when a fault and its
subsequent crash and recovery straddle a checkpoint. This problem arises because our fault
detection mechanism (waiting until a crash occurs before initiating recovery) has non-zero
latency. Fortunately, we find the fault-to-crash latency is typically very small compared to
the inter-checkpoint time, so corrupted checkpoints are extremely rare. Table 8 shows how
rare. In Table 8, the row labeled “Total Crashes” reports the total number of crashes we try
to recover in our hard state recovery and stack recovery experiments across the soft com-
putations. For these crashes, the row labeled “Straddle” reports the number in which the
fault and crash straddle a checkpoint, and the row labeled “% Straddle” reports the same
as a percentage of the crashes from each benchmark. As Table 8 shows, at worst only 1.1%
(and usually much fewer) of the crashes occur with the fault and crash straddling a check-
point. In other words, when considering all the benchmarks, over 99% of the crashes are
assured recovery to an uncorrupted checkpoint, and are thus guaranteed to complete with
architecture-level correctness when using conventional incremental checkpointing. From
this data, we conclude that conventional incremental checkpointing will successfully recover
practically all the crashes.

7. Related Work

As mentioned in Section 1., this paper is an extension of our earlier work on application-
level correctness [13]. Compared to our previous paper, this paper is the first to introduce
hard state recovery, and to evaluate its potential benefits.

Besides our own work, this paper is also related to the significant body of prior research
on characterizing soft error susceptibility. Several researchers have injected faults into
detailed CPU models to investigate soft error effects. Saggese et al [28] inject faults into a
DLX-like embedded processor; Wang et al [20] inject faults into a CPU similar to the Alpha
21264 or AMD Athlon; and Kim and Somani [19] inject faults into Sun’s picoJava-I1. All
of these fault susceptibility studies use gate- or RTL-level models, and inject faults into the
entire CPU. In contrast, our study uses a high-level architecture model, and focuses fault
injections on the register file, fetch queue, and 1Q only. Other researchers have demonstrated
many faults are masked and never become visible to software. Shivakumar et al [1] study
circuit level masking; Kim et al [29] study logical masking; Mukherjee et al [4] identify
microarchitecture-level and architecture-level masking; and Wang et al [25] study Y-branches,
another source of architecture-level masking.
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The main difference between our work and all previous studies on soft error susceptibil-
ity is the definition of correctness used to judge soft error impact. Previous work requires
architectural state to be numerically correct for program execution to be correct. In con-
trast, our work only requires program outputs to be acceptable to the user. By evaluating
correctness at a higher level of abstraction, we measure the additional soft errors that can
lead to acceptable program outputs.

In addition to studying soft error susceptibility, several researchers have also exploited
application-level error resilience. Like us, Thaker et al [30] observe many approximate al-
gorithms can tolerate soft errors with only minimal solution quality degradation. They
also show control computations are more vulnerable to faults than data computations, and
develop tools to automatically distinguish the two. In comparison, we provide a more
complete characterization of application-level error resilience through detailed architectural
simulation. Also, while Thaker et al exploit error resilience to reduce redundant protection
in the context of fault detection, we exploit the same to reduce checkpointing in the context
of fault recovery. Breuer [23], [31] also recognizes multimedia workloads can tolerate errors,
and proposes exploiting this to address manufacturing defects. Application-level correct-
ness is similar to Breuer’s notion of “error tolerance” (ET) [31]. The main difference is
Breuer exploits ET to tolerate hardware defects for higher chip yield, whereas we exploit
application-level correctness to tolerate soft errors on functionally correct hardware.

Moreover, researchers have also exploited application-level error resilience to address se-
curity attacks and software bugs. Failure-oblivious computing [32] relies on bounds-checking
code to catch memory errors due to security attacks before they can corrupt program state.
Rather than throw an exception, execution is allowed to proceed past errors in the hope
that the program can continue correctly. Rx [33] recovers failures due to software bugs, and
re-executes them from checkpoints in a modified environment. By removing environmental
factors that exercise bugs, Rx can run faulty programs to completion. Automated pred-
icate switching [34] modifies program predicates to force execution down different control
paths, thus correcting software control flow bugs. Similar to our work, these previous works
observe programs can achieve acceptable results in the face of errors. However, while these
previous works catch and/or correct errors, our work permits program corruptions to occur
but tolerates them.

Other application-level error resilience research includes Liu et al [35] which observes
certain image processing and tracking algorithms are inexact, and exploits this to improve
task schedulability in real-time systems. Palem [36] exploits probabilistic algorithms to
build randomized circuits that are extremely energy efficient. And Alvarez et al [37] exploit
the resilience to precision loss in multimedia applications to develop value reuse and energy
reduction techniques for floating point operations. Compared to our work, none of these
previous studies exploit error resilience for reliability purposes.

Finally, there have been studies in exploring ways to remove unnecessary state from
checkpoints. Feldman et al [27] propose incremental checkpointing to only copy memory
pages that have been modified since the previous checkpoint; Plank et al [38] propose mem-
ory exclusion techniques to remove dead and read-only memory regions from checkpoints.
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8. Conclusion

This paper explores definitions of program correctness that view correctness from the user’s
standpoint rather than the architecture’s standpoint. To quantify user satisfaction, we rely
on application fidelity metrics to capture solution quality as perceived by the user. We
conduct a detailed fault susceptibility study to quantify how much more fault resilient pro-
grams are at the application level compared to the architecture level. Across 6 multimedia
and AI benchmarks, we find 45.8% of fault injections that lead to architecturally incorrect
execution are correct under application-level correctness. Across 3 SPEC benchmarks, we
find 17.6% of architecturally incorrect faults produce acceptable results at the application
level. Based on these results, we conclude a significant number of faults that were previously
thought to cause erroneous execution are in fact completely acceptable to the user.

Our work also presents lightweight fault recovery techniques that exploit application-
level correctness to selectively checkpoint hard state. Our first technique, stack recovery,
recovers 66.3% of program crashes in our soft computations. For the SPECInt CPU2000
benchmarks, stack recovery recovers fewer crashes, 24.3% to 34.5%, of which 2.5% represent
additional recoveries allowed by application-level correctness. These recoveries are achieved
with near-zero runtime overhead and no programmer intervention (i.e., stack recovery is
fully automated). Our second technique, hard state recovery, recovers 89.7% of program
crashes in our soft computations with half the runtime overhead of conventional incremental
checkpointing. Unfortunately, hard state recovery cannot be applied to the SPEC bench-
marks because it requires manual identification of the selective checkpoints which we could
not do for SPEC.

Based on these results, we make several observations. First, our lightweight fault re-
covery techniques are impractical for fail-safe systems since we cannot recover 100% of the
faults. However, because our results show selective checkpointing can recover a significant
number of faults (especially for soft computations), we conclude our techniques are useful
for systems where simply improving reliability is desirable. In addition, our results clearly
show a tradeoff exists between the degree of reliability improvement our techniques provide
and the cost they incur in terms of performance loss and program analysis effort. (Stack
recovery optimizes the cost side of this tradeoff, while hard state recovery optimizes the
reliability side of this tradeoff). We believe stack recovery represents a more desirable point
in this tradeoff space because it provides a non-trivial reliability benefit at very low cost
to the user. In contrast, while hard state recovery provides a larger reliability benefit, it is
useful only for soft computations and only in systems where the performance benefit jus-
tifies the programmer effort to identify the hard state. Hard state recovery would become
more desirable if techniques to automate the identification of hard state were developed.

Finally, although it is beyond the scope of this work, an important question is to what
extent do real workloads exhibit soft program outputs? Real workloads are typically more
complex than the programs studied in this paper. One concern is whether the soft outputs
our techniques exploit are as prevalent in real workloads as they are in the programs we
study. If not, our lightweight fault recovery techniques may be less applicable to real
systems. This is an important direction for future work.
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