Bimode Cascading: Adaptive Rehashing for
ITTAGE Indirect Branch Predictor

Yasuo Ishii
The University of Tokyo, NEC

yishii@is.s.u-tokyo.ac.jp

Mary Inaba
The University of Tokyo
mary@is.s.u-tokyo.ac.jp

ABSTRACT

As the success rate of branch prediction improves more and
more, indirect branch prediction is becoming increasingly
important. To find out what feature is important in modern
indirect branch predictors, we analyzed all the workloads
provided in CBP3. Our analysis shows that 10 out of 40
workloads include more than 1000 monomorphic indirect
branches, which take only one destination. It also shows that
polymorphic branches, which take two or more destinations,
covers by more than 80% of executed branches in 8 out
of 40 workloads. However, conventional predictors cannot
handle both types of workloads efficiently because their
configurations are fixed and non-adaptive.

In order to handle those two different types of workloads
in limited hardware resources, adaptive reconfiguration
is essential. = We propose Bimode Cascading ITTAGE
predictor (BCTAGE). The BCTAGE predictor combines
adaptive rehashing with the ITTAGE predictor. The
BCTAGE predictor tracks workload characteristics and
adapts its configuration to the workload dynamically. In our
experiments, the BCTAGE predictor improves prediction
accuracy significantly.

1. INTRODUCTION

Branch target prediction is becoming more and more
important as a conditional branch prediction has been
becoming more and more accurate. Especially, branch
target predictions for indirect branches are essential for
several workloads. Generally, the indirect branches are
categorized as the monomorphic branch, which takes only
one target, and the polymorphic branch, which takes two
or more targets. The branch target buffer (BTB) [1] is
useful to predict monomorphic branch because it correlates
a branch target address with an address of the indirect
branch. However, the BTB cannot predict polymorphic
branch correctly. The tagged target cache (TTC) [2]
supports polymorphic branches by using the branch history.
However, it wastes the hardware resource for the prediction
of the monomorphic branch because it provides a dedicated
cache entry for each branch history pattern even for the
monomorphic branch.

To improve the prediction accuracy, two hybrid
approaches have been proposed. One is the cascading hybrid
predictor and the other approach is the adaptive rehashing.
The cascaded predictor [3] employs both the TTC-like
tagged component and the BTB-like base component. The
BTB-like base component is used to predict monomorphic

Takeo Sawada
The University of Tokyo

tsawada@is.s.u-tokyo.ac.jp ksk9687@is.s.u-tokyo.ac.jp

Keisuke Kuroyanagi
The University of Tokyo

Kei Hiraki
The University of Tokyo
hiraki@is.s.u-tokyo.ac.jp

branches and only polymorphic branches are predicted
by the TTC-like tagged component. This approach is
also used in the ITTAGE branch predictor [4]. The
ITTAGE employs multiple TTC-like tagged components to
improve the prediction accuracy. As the adaptive rehashing,
Rehashable BTB (R-BTB) [5] uses the BTB for polymorphic
branches by employing the additional hash function that
uses the branch history. When the R-BTB detects the
hard-to-predict polymorphic indirect branch, the R-BTB
uses the additional hash function to predict polymorphic
branches correctly. Otherwise, the R-BTB worked as the
normal BTB.

In this paper, we propose the Bimode Cascading ITTAGE
branch predictor (BCTAGE). The BCTAGE combines
adaptive rehashing to the ITTAGE. The BCTAGE tracks
characteristics of the current workload and adapts its
configuration dynamically. It improves the cost-efficiency
and the accuracy compare to the ITTAGE.

We analyze the workload used in the third championship
branch prediction (CBP3) and discuss the requirement of
the indirect branch predictor in Section 2. We propose
the BCTAGE branch predictor and describe its detailed
design in Section 3. The implementation parameters and the
budget counting are described in Section 4, and we conclude
this paper in Section 5.

2. WORKLOAD CHARACTERIZATION
OF INDIRECT BRANCHES

As a preliminary study, we examined the number of
indirect branch instructions and the coverage ratio of
polymorphic branches in the 40 workloads provided in
CBP3. The coverage ratio is a proportion of the number
of executed polymorphic branches to the total number of
executed indirect branches.

Table 1 and Figure 1 show our analysis result. 10 out of
40 workloads, such as INT01 and WS03, are excluded from
Figure 1 because the number of indirect branches in these
workloads is too small (less than 200000). We categorized
rest of the workloads into three categories.

Workloads in the first category have relatively large
number of indirect branch instructions, and most of the
branch executions are issued by monomorphic branches.
It shows that the coverage ratio of polymorphic branch
becomes less than 50% when the workload has more than
1000 indirect branch. For example, CLIENT10 has 10524
branches, but only 636 of them are polymorphic.

Workloads in the second category have relatively fewer
indirect branch instructions, and most of the branch

Table 1: Characteristics of distributed traces for CBP3 (representative examples

Workload name CLIENTO05 | CLIENT10 INTO1 INTO05 | SERVERO1 WS03
of indirect branches (static) 10524 3852 10 416 28 0
of polymorphic branches (static) 636 236 2 19 11 0
of indirect branches (dynamic) 725053 1002783 452 215588 886150 0
Coverage of polymorphic branches 42.1% 35.3% 3.3% 95.7% 84.5% N/A
eemTTTTTTT = l Branch Address (PC), Branch History (Global History, Path History, Target History) |
10000
— % x ,'I Category 1 l \L J/ \L \L l
g i « x xx % L (Monomorphic-dominant) Base TO T1 T2 T3 T4
‘E \\\ >i ____ R _’_’ ______ normal bimode normal bimode normal
e 1000 ;<—‘: =EEEETR b BN R PR target [tag [c [r
% (1 X% x > Sox XN target | tag [c|r
€
_‘§ 100 \-\-""“X“C ------ ;;(;‘h"') """" - .'/ x \‘\‘ hit hit_tag hitl b hit tf | hit ‘lag hit_bim hit_tag hit_tag
5 “ategory thers | H
3 \ ! \—‘
B '\ H]
'g N X / o
;;5* 10 — ;
Category 2
** (Pdo]ey%:;‘rphic- MUX
1 dominant) ; H
' : BIM i
0.0% 20.0% 40.0% 60.0% 80.0% 100.0% | Cadseading MUx/ AG
Coverage of polymorphic branches (dynamic) R : fﬂaﬂlﬁ‘é?ﬁ
Figure 1: Correlation between the number of Final Prediction Multiplexer .

indirect branches and coverage ratio of polymorphic
branch (workloads with >200000 indirect branches).

executions are issued by polymorphic branches. For
example, SERVERO1 includes only 28 indirect branch
instructions and more than 80% of branch execution is
polymorphic branches.

Workloads in the third category have both monomorphic
and polymorphic branches.

From these observations, we concluded that adaptive
reconfiguration feature is indispensable to achieve best
accuracy in all three categories.

3. THE BIMODE CASCADING ITTAGE
BRANCH PREDICTOR (BCTAGE)

As we investigated in Section 2, the dynamic
reconfiguration such as adaptive rehashing is a cost-effective
approach. We propose Bimode Cascading ITTAGE
(BCTAGE) which combines adaptive rehashing to the
ITTAGE. By using the adaptive rehashing, the BCTAGE
adapts to both many easy-to-predict monomorphic branches
and a small number of hard-to-predict polymorphic branches
dynamically.

3.1 Overview

In the ITTAGE, the tagged components are optimized
for polymorphic branches. The BCTAGE modifies these
tagged components to support BTB-like prediction by the
adaptive rehashing. The modified tagged components are
called the bimode tagged components and the original
tagged components are called the normal tagged components
in this paper. Figure 2 shows the overview of the
6-component BCTAGE. The BCTAGE contains a BTB-like
base component (labeled as base), multiple TTC-like normal
tagged components (labeled as TO, T2, and T4), and
multiple bimode tagged components (labeled as T1 and T3)
that employ adaptive rehashing. The cascading multiplexers

Prediction Result

Figure 2: The BCTAGE Branch Predictor.

are used to select the prediction using the longest branch
history length, which is called the longest matching.

3.2 Bimode Tagged Components

Figure 3 shows the block diagram of the bimode
component for the BCTAGE. Originally, the normal tagged
component has a hash pair using the branch history (labeled
as TAG) to calculate the tag and the index. The bimode
component employs an additional hash pair (labeled as BIM)
that uses only branch address. One hash function specified
by the mode register is used for the prediction. The value
of the mode register is updated when the BCTAGE detects
that the characteristics of the current workload is changed.
When the workload contains many indirect branches, the
bimode component uses the pair using only branch address
to predict monomorphic branches. We call it BIM mode
or BIM component. When the workload contains small
number of indirect branches, the bimode component uses
the pair using both branch address and branch history to
predict polymorphic branches. We call it TAG mode or
TAG component.

Entry of the bimode component contains four fields, which
are the branch target address, the confidence counter, the
partially tag, and the replacement counter. The replacement
counter is called useful bit in the ITTAGE, but we change
the name because it is used for the replacement information
in the BIM mode.

3.3 Partially Tagged Base Components

The BCTAGE employs a set-associative partially tagged
branch target buffer as the base component. Each entry
holds an 8-bit partially tag. The partially tag is used to
select a hit way and to track characteristics of the current

| Branch History Register |
T
1 I]

TAG mode

| 0 1

Bimode Tagged Component

tar,et| tag | ctr | repl

)

Target Hit/Miss

Figure 3: The Bimode Tagged Component.

workload. When no entries hit in the tag, the BCTAGE
assumes that many indirect branches are recently appeared
in the current workload. This feature helps to track the
characteristic of the current workload.

3.4 Prediction Algorithm

All predictions are performed in the fetch stage. The
base component and the tagged components are accessed in
parallel. The base component is read by the branch address.
The tagged components are read by the indexes that are
generated by the hash functions specified by the mode
register. Each tagged components provide its prediction on a
tag match. The BIM components provide their predictions
for BIM cascading multiplexer and the TAG components
provides their predictions for TAG cascading multiplexer.

The TAG cascading multiplexer selects the longest
matching prediction and the second longest matching
prediction. It is known that the longest matching prediction
often becomes less accurate than that of the second longest
matching prediction when the longest matching prediction
is generated by a newly allocated entry. In such case, the
predictor uses the second longest matching prediction as the
final prediction like the ITTAGE. Otherwise, the longest
matching prediction is used as the prediction result. The
entry whose confidence counter and replacement counter
show the lowest level is used as newly allocated entry. To
track the accuracy of the newly allocated entries, an 8-bit
policy selection counter is employed by the BCTAGE. The
update of the policy counter is described in Section 3.5.

The BIM cascading multiplexer selects a prediction using
the longest tag length from predictions provided by the
base component and the BIM components. Unlike TAG
cascading multiplexer, the prediction using the longest
tag length is always selected as the output because all
corresponding components use only branch address.

The final prediction multiplexer chooses a prediction from
outputs of two cascading multiplexers. The prediction
from BIM cascading multiplexer is used when all TAG
components miss to their tag matches.

3.5 Updating Existing Entry

An update of prediction components are performed in
the retire stage. On updating the predictor, the BCTAGE
searches the prediction component that makes the longest
matching. Only the component providing the prediction is

updated.

The confidence counter of the wupdating entry is
incremented when the target address is correct. Otherwise,
the confidence counter is decremented. The target address
is updated when the confidence counter shows the lowest
level. On updating the target address, the branch outcome
is simply written to the corresponding entry. The update of
the replacement counter is different between the TAG mode
and the BIM mode. The replacement counter is updated
when the second longest matching prediction is different
from the prediction of the longest matching component.
When the prediction of the longest matching component
is correct, the replacement counter is incremented. When
the second longest matching prediction is correct, the
replacement counter is decremented. When the longest
matching entry is newly allocated entry and the replacement
counter is updated, the policy selection counter is updated.
The policy selection counter is incremented when the longest
matching prediction is correct. The policy selection counter
is decremented when the longest matching prediction is
wrong. The update of the replacement counter of the
BIM component is different from that of the ITTAGE.
The replacement counter of the BIM component is always
incremented because the counter shows only a priority of the
victim selection in the BIM components.

The base predictor is updated when all tagged components
misses in the tag matching. When the base predictor is
updated, the target address and the confidence counter
are updated as performed in the tagged component. The
replacement counter is incremented as performed in the BIM
component.

3.6 Allocating New Entry

On a misprediction, the BCTAGE allocates new tagged
component for future prediction. The allocation policy is
derived from ITTAGE. The predictor scans entries of TAG
components that use longer history length than that of the
longest matching component. The predictor selects one out
of those candidates. Selected entry is then initialized. The
partially tag and the target address are initialized to the
branch outcome. The other fields are initialized to the lowest
level.

When there are no BIM components that hit in the tag
matching, the predictor also allocates BIM components.
The predictor selects a victim entry from multiple BIM
components. The prediction entry whose replacement
counter is the lowest in the candidates is replaced by the
new entry. The new entry is initialized as performed in the
TAG components.

The base predictor also allocates new entry on a
misprediction. When no entry hit in partially tags, an entry
whose replacement counter is the smallest is replaced by the
new entry. The new entry is initialized as performed in the
TAG and BIM components.

3.7 Workload Detection

As discussed in the previous section, the number of the
indirect branches correlates with the coverage ratio of the
polymorphic branches. Therefore, the BCTAGE tracks the
number of the indirect branches to detect the workload
characteristic. =~ Two performance counters are used for
tracking the characteristics of the current workload. The
number of mispredictions due to capacity shortage of the

Table 2: Configuration of Tagged Components (history length = 0 indicates BIM mode).

[TO,T1 [T2,T3 [T4,T5 | 16,17 | T8,T9 [T10,T11 | T12,T13 | T14,T15 | T16,T17 | T18

of Entry 256 512 1024 512 512 512 512 256 256 256
Tag Width 13 14 15 16 17 18 19 21 22 23
Hist. Length (easy) 5,6 8,10 12,15 19,24 30,37 47,59 73,92 115,144 180,225 281
Hist. Length (normal) 5,0 8,10 12,0 19,24 30,0 47,59 73,0 115,144 180,0 281
Hist. Length (hard) 5,0 8,0 12,0 19,0 30,0 47,0 73,0 115,0 180,0 281
Table Cost (Kbit) 12.25 25.00 51.00 26.00 26.50 27.00 27.50 14.25 14.50 | 14.75

base and BIM components is counted as the metric. When
the performance counters show a large value, large amount
of BIM components are required.

The performance counters are update on a misprediction.
The performance counters are increased when all base and
BIM components fail to tag matching. In this case, the
BCTAGE assumes that the capacity shortage of the BIM
components causes the misprediction. On the other hand,
the performance counters are decreased when the base
component hit to the partially tag. In this case, the
BCTAGE assumes that more TAG components are required
because the base prediction is already provided by the base
component. When the counter values are overflow, the
BCTAGE allocates more bimode tagged components to the
BIM components because the current workload contains
many indirect branches that should be predicted by the
BTB-like predictor. The BCTAGE allocates more bimode
tagged components to the TAG components when the
counter values are underflow.

The BCTAGE uses three modes in this work. When
there are many indirect branches, the predictor assigns
all bimode tagged components to the BIM mode, which
is called a hard mode. When there is small number of
indirect branches, the predictor assigns all bimode tagged
components to TAG mode, which is called an easy mode.
Otherwise, the predictor uses a half of the bimode tagged
components as BIM components, which is called a normal
mode. The mode state is written to the mode register. The
mode register is used to switch the hash function for the
prediction as shown in Figure 3.

4. IMPLEMENTATION

We implement 20-components BCTAGE (one base
component, ten normal tagged components, and nine
bimode tagged components) for the competition. Table 2
shows the configuration of the tagged components.

We use 281-bit global history length for the BCTAGE.
The global history contains branch direction, path history,
and target history. All information for branch history is
duplicated for speculative updating. One is updated in the
fetch stage and the other is updated in the retire stage. The
branch history updated in the fetch stage is used for the
prediction. The branch history updated in the retire stage
is used for the updating the predictor. The detailed budget
count is shown in Table 3.

5. CONCLUSION

The amount of monomorphic and polymorphic branch
executions varies from workload to workload. To support
both monomorphic-dominant and polymorphic-dominant
workloads in limited hardware resources, indirect predictors

Table 3: Configuration and Budget Count.

Resource | Configuration Budget
Global 281-bit branch direction x 2 562
History 281-bit path history x 2 562
281-bit target history x 2 562
Path reg. (32-bit) x 2 64
Base 1280-entry, 5-way BTB, 8b tag 56320
Predict. | 32b addr, 2b ctr, 2b repl info. (55.00K)
Tagged 19-components (see Table 2) 473856
Comp. 32b addr, 2b ctr, 2b repl info. | (462.75K)
Others Policy selection counter (8-bit) 8
Prediction mode reg. (2-bit) 2
Perf. counter (16-bit) x 2 32
Random seed (16-bit) 16
Total 531984

should adapt their configuration to running workload.

In this paper, we propose the Bimode Cascading ITTAGE
branch prediction (BCTAGE). The BCTAGE predictor
has base and BIM components for monomorphic branch
prediction, and TAG components for polymorphic branch
prediction. BIM components and TAG components can be
dynamically reconfigured according to current workload. It
effectively supports both monomorphic-dominant workloads
and polymorphic-dominant workloads in limited budget
resources.

6. REFERENCES

[1] J. K. F. Lee and A. J. Smith, “Analysis of branch
prediction strategies and branch target buffer design,”
Tech. Rep. UCB/CSD-83-121, EECS Department,
University of California, Berkeley, Aug 1983.

[2] P.-Y. Chang, E. Hao, and Y. N. Patt, “Target
prediction for indirect jumps,” in Proceedings of the
24th annual international symposium on Computer
architecture, ISCA ’97, pp. 274283, 1997.

[3] K. Driesen and U. Hélzle, “The cascaded predictor:
economical and adaptive branch target prediction,” in
Proceedings of the 31st annual ACM/IEEE
international symposium on Microarchitecture, MICRO
31, pp. 249-258, 1998.

[4] A. Seznec and P. Michaud, “A case for (partially)
tagged geometric history length branch prediction,”
The Journal of Instruction Level Parallelism, vol. 8,
Febrary 2006.

[5] T. Li, R. Bhargava, and L. K. John, “Rehashable btb:
An adaptive branch target buffer to improve the target
predictability of java code,” in Proceedings of the 9th
International Conference on High Performance
Computing, HiPC 02, pp. 597-608, 2002.

