
1

Exploring Correlation for Indirect Branch Prediction

Nikunj Bhansali Chintan Panirwala Huiyang Zhou

Department of Electrical and Computer Engineering

North Carolina State University

{nsbhansa, cdpanirw, hzhou}@ncsu.edu

Abstract

In this paper, we present a highly accurate predictor
for indirect branches. The baseline is a tagged PPM-like
(Prediction by Partial Matching) structure. The pattern
to be matched includes global taken/not-taken and path
history of both conditional and indirect branches. Rather
than the conventional way of using the longest matches
for prediction, we propose simple yet effective ways to
adaptively select from matches with both short and long
histories. We also designed an auxiliary predictor to
exploit the correlation between the addresses of
producer loads and the targets of consumer indirect
branches.

1. Introduction

Besides conditional branches, indirect branches with
multiple targets present a challenge for processor
performance, especially when the targets are dependent
on long-latency computation or memory accesses.
Mispredictions of such indirect branches result in
significant performance loss as well as energy wasted on
executing instructions along wrong paths. In this paper,
we propose a predictor to achieve high prediction
accuracy for indirect branches.

1.1. Related work

Previous studies have shown that history information
of control flow carries strong correlation to the targets of
indirect branches. To capture such correlation, target
caches [1] were proposed, in which the targets of an
indirect branch with different history are maintained
separately. Cascaded predictors [2] were proposed later
on to combine multiple target caches with different
history lengths. The Prediction by Partial Matching
(PPM) algorithm provides a more generic model to
exploit control-flow history information. PPM-based
predictors [5] contain multiple Markov predictors with
each capturing a different history length and the one with
the longest match will be used to make the final
prediction. The ITTAGE predictor [7] is an efficient way
to implement the PPM algorithm with very long
histories. Another way to exploit branch history
information for indirect branches is to view each target

of an indirect branch as a virtual branch [6]. This way, a
conditional branch predictor can be (re)used to predict
which virtual branch is taken and the associated target
will be the prediction of the indirect branch.

Our proposed predictor leverages previous work
based on the PPM algorithm, the ITTAGE predictor in
particular, for indirect branches. Our key idea is that
rather than always using the Markov model with the
longest match to make a prediction, we adaptively select
the Markov models with proper history lengths. Similar
observations that the longest matches may not be the best
choice have been made in our previous work [3] on
conditional branch prediction.

Another novelty of our work is that we found that
there exists very strong correlation between the producer
load addresses and the consumer branch targets, similar
to address-branch correlation explored for conditional
branches [4]. We exploit such correlation at the address
generation (AGEN) stage of a load instruction to make
early correction of mispredicted indirect branches.

1.2. Outline

In section 2, we present the design of our proposed
predictors and discuss its implementation issues. Section
3 reports the detailed information of the storage cost of
our proposed design. Section 4 briefly analyzes the
experimental results. Section 5 concludes the paper.

2. Design

2.1. A Main Predictor at the Fetch Stage

The baseline of our design is the ITTAGE predictor.
It has multiple tagged tables with each capturing a
specific history length. In our design, we use the same
multiple-table structure. The first table (T1) uses the
shortest history to generate its indices and tags while the
last table (Tn) uses the longest history for its tag and
index functions. Our key improvement over the ITTAGE
predictor is that rather than using the cascaded design to
select the table providing the longest match, we
adaptively choose which table to be used for the final
target prediction. In addition, we choose not to include a
base predictor, which is to be indexed with the program
counter (PC) without any history information, due to its

2

limited usage and relatively high storage cost. The
overall predictor structure is shown in Figure 1a.

As shown in Figure 1a, in all the tables except T1,
each entry has 4 fields, tag, u (usefulness for
replacement), target and alt. We design two ways to
choose a table to provide the final prediction when there
is more than one table having tag matches. The first is
through the alt field. If this one-bit field is clear, it means
that the target from the current entry is preferred for
prediction. If the field is set, it means that a table with
shorter history is to be used to make the final prediction.
Such logic is implemented using the multiplexers, which
are controlled with the alt fields, as shown in Figure 1a.
As T1 is the one with shortest history, there is no need
for the alt field. Initially, the alt fields in all the tables are
set to false, which is functionally equivalent to selecting
the longest match. During the update phase, if it is found

that the table with the longest match fails to make the
correct prediction while another table does, the alt field
fields will be set for those entries with longer history
lengths. The tag match signals shown in Figure 1a and
Figure 1b are used to ensure that the tables without a tag
match will not be used for final prediction.

Our second way to select the proper table to provide
the prediction is to use another multiplexer controlled by
a separate structure, called a hard-to-predict branch table
(HBT). The HBT is a cache-like set- associative structure
and each entry contains a tag, a misprediction counter
(mc), and a history length (hlen) field, as shown in
Figure 1c. The mc field is used for replacement so that
only those indirect branches with high misprediction
rates are kept in the table. The HBT is updated based on
the prediction made using the longest match rather than
the actual prediction depending on the alt fields. Since

Tag

T1

u Target Alt Tag u Target Alt Tag u Target Alt Tag u Target

T2 T3 Tn

…

T1_Match

T2_Match

T1,2_Match

T3_Match

T1,n-1_Match

Tn_Match

Ti_Match is the tag
match signal of table Ti
T1,i_Match is the
combined tag match
signal of tables T1 to Ti

T1_Match
T2_Match

Tn_Match

Target Prediction

(a) Predictor Structure

(b) Tag Match Signals

T1_Match

T2_Match
T1,2_Match

T3_Match

T1,n-2_Match
T1,n-1_Match

T1,3_Match

T1,n-2_Match

…
tag mc hlen

HBT

(c) A table for hard-to-predict branches

HBT hit
…

hlen

Figure 1. The main predictor to exploit correlation in control-flow history

…

3

the branches in HBT are mispredicted using the longest
match, we increase the hlen field, whose value, x, is then
used to select the table with the xth longest histories. For
example, if the hlen of an indirect branch is 2 and tables
T2, T4, and T5 have tag matches and their corresponding
alt fields are false, we will not select the longest match
(i.e., T5) or the second longest match (T4). Instead, the
table T2 is selected as a result of the hlen field being 2.

Our proposed predictor is accessed at the instruction
fetch stage to make a prediction and it is updated at the
retire stage of an indirect branch. Due to the different
program state at the two stages, the predictor uses two
copies of global branch and path history information, one
for prediction and the other for update.

2.2. An Auxiliary Predictor at the AGEN Stage

Our proposed predictor described in Section 2.1
predicts targets at the fetch stage of an indirect branch.
To reduce the misprediction penalty, we leverage the
execution results of the instructions, upon which an
indirect branch is dependent.

From our code analysis, we found that many hard-to-
predict indirect branches are dependent upon load values.
Since the loaded value will be immediately used by the
dependent indirect branches, such execution results are
available too late to be useful to reduce misprediction
penalty. Therefore, we examine the correlation between
the producer load addresses and the consumer branch
targets, similar to the address-branch correlation
observed for conditional branches [4]. Figure 2 shows
such an example from one benchmark.

Figure 2. A code example for address-target
correlation.

From Figure 2, we can see that the producer load
accesses two primary addresses and either address
contains a different branch target. As long as the data
structure (e.g., a virtual function table) at these addresses
is not frequently updated, the addresses of the producer
loads are sufficient to determine the targets of their
consumer indirect branches. We refer to such correlation
as address-target correlation (ATC).

In our design, we capture ATC in a small cache-like
set associative structure, called address-target table
(ATT) as shown in Figure 3. Each entry in ATT contains
a tag and multiple pairs of hashed addresses and the
corresponding targets.

ATT is accessed at the address generation (AGEN)
stage of a load instruction if it has a dependent indirect
branch. The PC of the consumer indirect branch is used
for tag match to see whether an entry in ATT has been

allocated for it. If so, the hashed address of the producer
load will be used to compare with multiple address-target
pairs in the entry to find a matching pair to provide the
prediction for the consumer branch. If the prediction
differs from the one made at the fetch stage of the
indirect branch, an early misprediction recovery is
initiated to reduce the misprediction penalty. ATT is
updated at the execution stage of an indirect branch.
Only if it is mispredicted at the fetch stage, we search for
its producer load address and then update ATT with the
actual branch target. The least-recently-used (LRU)
replacement policy is used to select a victim in ATT.
Random replacement is used if there are more address-
target pairs than what each entry in ATT can maintain.

Figure 3. An auxiliary predictor to exploit ATC.

3. Cost of Storage

In our simulator, we adopted the multiple table
structure from the L-TAGE predictor [8]. We have a
total of 11 tables with the structure described in Section
2. The overall storage cost is presented in Table 1.

4. Experimental Results

Our proposed predictors are implemented in the
distributed framework of CBP-3. The performance
improvements, measured with reduction in misprediction
penalties per 1K instructions across all the benchmarks,
of our proposed designs over the baseline ITTAGE
predictor are shown in Figure 4.

Figure 4. The performance improvement of our
proposed design over the baseline ITTAGE predictor.

From Figure 4, we can see that by adding the 1-bit alt
field in each entry of the ITTAGE prediction tables, the

0%

2%

4%

6%

8%

10%

12%

14%

16%

Alt field
only

HBT only Alt field and
HBT

ATT only All with
small ATT

All with
large ATT

Performance Improvement over ITTAGE predictor

tag <addr,tar> <addr,tar>

Hashed load address

Address-Target Table
Br PC

Load R19 = Mem[R3 +…] //Addr: x60848100 x60846ec8
…
Br R19 // Target: x60751a64 x607691c9

4

performance is improved by 7.6% (labeled ‘Alt field
only’). In comparison, if we only use HBT to select the
proper table instead of the longest matches, the
performance is improved by 5.8% (labeled ‘HBT only’).
The combination of both mechanisms results in an
improvement of 12.3% (‘Alt field and HBT). Early
misprediction recovery using ATT provides a 3.4%
improvement (‘ATT only’). This relatively limited
performance enhancement is due to the fact that the
latency between the AGEN stage of a producer load and
the EXE stage of its consumer indirect branch is often a
small portion of the misprediction penalty, which starts
from the fetch stage of the indirect branch. This suggests
that for higher performance gains we need to explore
address-target correlation beyond the immediate
producer-consumer pairs. Nevertheless, ATT provides a
highly cost-effective way to improve performance. When
all these schemes utilized together, the performance is
improved by 15.6% using a large ATT (specification
shown in Table 1). For an ATT with much lower cost, an
8-entry ATT with each entry containing 4 address-target
pairs, the overall performance improvement is 14.8%.

5. Conclusions

In this paper, we present our design for a highly
accurate indirect branch predictor. The key insight
includes (a) although control flow history carries
correlation to targets, the strength of correlation may
either increase or decrease for different indirect branches
when we increase the history length; and (b) there exists
strong correlation between producer load addresses and
consumer branch targets. Our proposed design includes a
main predictor to exploit correlation in history and a
simple auxiliary predictor to exploit correlation in load
source operands. Our results show that our design
reduces the misprediction penalty significantly.

6. Acknowledgement

This work is supported in part by an Intel research
grant and an NSF CAREER award CCF-0968667.

7. References

[1] P. Chang, E. Hao, and Y. Patt, “Target Prediction for
Indirect Jumps”, ISCA, 1997.

[2] K. Driesen and U. Holzle, “The Cascaded Predictor:
Economic and Adaptive Branch Target Prediction”,
MICRO-31, 1998.

[3] H. Gao and H. Zhou, “PMPM: Prediction by Combining
Multiple Partial Matches”, JILP, 2007

[4] H. Gao, et. al, “Address-Branch Correlation: A Novel
Locality for Long-Latency hard-to-Predict Branches”,
HPCA, 2008.

[5] J. Kalamatianos and D. Kaeli, “Predicting Indirect
Branches via Data Compression”, MICRO-31, 1998.

[6] H. Kim, et. al., “VPC Prediction: Reducing the Cost of
Indirect Branches via Hardware-Based Dynamic
Devirtualization”, ISCA, 2007.

[7] A. Seznec and P. Michaud. “A case for (partially) TAgged
GEometric history length branch prediction”, JILP, 2006.

[8] A. Seznec, “The L-TAGE Branch Predictor”, JILP, 2007.

Table 1. The storage cost the proposed design

Component Storage Cost
Table 1 2048 entries, each entry has a 7-bit tag, 2-bit u

field, 32-bit target address. Total
2048x(7+2+32) = 83968 bits

Table 2 1024 entries, each entry has a 7-bit tag, 2-bit u
field, 1-bit alt field, 32-bit target address. Total:
43008 bits

Table 3 4096 entries, each entry has a 8-bit tag, 2-bit u
field, 1-bit alt field, 32-bit target address.
Total:176128 bits

Table 4 2048 entries, each entry has a 8-bit tag, 2-bit u
field, 1-bit alt field, 32-bit target address.
Total:88064 bits

Table 5 512 entries, each entry has a 9-bit tag, 2-bit u
field, 1-bit alt field, 32-bit target address.
Total:22528 bits

Table 6 512 entries, each entry has a 10-bit tag, 2-bit u
field, 1-bit alt field, 32-bit target address.
Total:23040 bits

Table 7 512 entries, each entry has an 11-bit tag, 2-bit u
field, 1-bit alt field, 32-bit target address.
Total:23552 bits

Table 8 512 entries, each entry has a 12-bit tag, 2-bit u
field, 1-bit alt field, 32-bit target address.
Total:24064 bits

Table 9 512 entries, each entry has a 12-bit tag, 2-bit u
field, 1-bit alt field, 32-bit target address.
Total:24064 bits

Table 10 64 entries, each entry has a 13-bit tag, 2-bit u
field, 1-bit alt field, 32-bit target address.
Total:3072 bits

Table 11 64 entries, each entry has a 14-bit tag, 2-bit u
field, 1-bit alt field, 32-bit target address.
Total:3136 bits

Table 12 64 entries, each entry has a 15-bit tag, 2-bit u
field, 1-bit alt field, 32-bit target address.
Total:3200 bits

HBT 32 entries, each entry has a 32-bit tag, 2-bit u
field, 4-bit hlen field Total:1216 bits

History Global history: 640x2 = 1280 bits
ATT 26 entries, each entry has a 32-bit tag, a 5-bit

LRU field, 10*10 bits for storing addresses and
32*10 bits for targets. Total = 11882 bits

Extra 55 bits (path history and few counters)
Overall 532257 bits (64.97kB)

