
Revisiting Local History to Improve
the Fused Two-Level Branch Predictor

Yasuo Ishii
The University of Tokyo, NEC
yishii@is.s.u-tokyo.ac.jp

Keisuke Kuroyanagi
The University of Tokyo

ksk9687@is.s.u-tokyo.ac.jp

Takeo Sawada
The University of Tokyo

tsawada@is.s.u-tokyo.ac.jp
Mary Inaba

The University of Tokyo
mary@is.s.u-tokyo.ac.jp

Kei Hiraki
The University of Tokyo

hiraki@is.s.u-tokyo.ac.jp

ABSTRACT
For a long time, branch predictors that use local history
have employed a large table to provide a dedicated branch
history series for each branch instruction. This has increased
the cost of the local history table and complexity of
management of the branch history. We have explored the
design space of the local history to reduce the total cost
and the complexity. We found that a predictor that uses
per-set branch history, which holds branch history in a
moderately-sized local history table, outperforms a predictor
that uses a conventional, large, local history table.

In this paper, we propose the FTL++ branch predictor,
which exploits the benefit of per-set branch history. This
predictor reduces the number of local history table entries
and extends the length of the local history to improve the
prediction accuracy. Furthermore, we combine optimization
techniques to the FTL++. The optimized FTL++ branch
predictor achieves higher prediction accuracy than existing
branch predictors.

1. INTRODUCTION
Dynamic branch prediction uses global history and local

history to achieve higher prediction accuracy. Use of local
history is an effective way to detect control structures,
such as the loop structure. Therefore, local history is
used in many existing branch predictors. However, branch
predictors using local history have several problems. First,
the storage cost of local history is much higher than that
of global history because local history requires a large
table, which is called a local history table (LHT), for
tracking the branch history of each branch instruction, while
global history requires only a simple shift register, called a
global history register (GHR). Moreover, managing the local
history table requires a complex mechanism because it has
to keep the information of in-flight branches [1].

In this paper, we explore the best configuration of local
history table to improve prediction accuracy and cost
efficiency. We disclose that a local history table with
moderate number of entries has lower cost and complexity
yet produces good prediction accuracy. Such local history
table is also called a per-set branch history [3]. We propose
the FTL++ branch predictor, which utilizes per-set branch
history to improve prediction accuracy.

2. THE FTL BRANCH PREDICTOR
Design of the FTL++ is derived from the Fused

Two-Level (FTL) Branch Predictor [2] that extends the

��

���������	�
�
�
����������	
������	����
�

����������	�
�
�
����������	
������	����
�

�
�
��

�

������������������

���

�
��
�
�	

��
�

�
�
��

���

������

���

Figure 1: O-GEHL and FTL Branch Predictor.

Optimized GEometric History Length (O-GEHL) branch
predictor [5]. The FTL is our previous work and was
proposed in the previous competition. The overall structure
of the FTL and the O-GEHL is shown in Figure 1.

The O-GHEL contains a bimodal component (labeled as
BIM) and global prediction components (labeled as global
components) indexed by the branch address and global
history. Each entry of the prediction components is a
saturating counter that represents a bias of a corresponding
branch history pattern. The predictions from these
components are reduced through an adder tree and the sign
of the sum represents the prediction result. The key feature
is the history length policy of the hash functions, which is
called the geometric history length. Geometric series (e.g., 2,
4, 8, 16 ...) are used for the history length of hash functions.
By using geometric history length, the branch predictor can
effectively use very long branch history (longer than 100).

The FTL extends the O-GEHL by using local history.
It employs a local history table (labeled as LHT)
and additional prediction components (labeled as local
components) that use the local history. These additional
components also use the geometric history length. The
FTL outperforms the O-GEHL because it can detect several
control structures, such as loop structure, effectively.

3. REVISITING LOCAL HISTORY
As a preliminary study, we explore the best configuration

of the local history table. For a long time, local history
tables have been designed to provide a dedicated branch
history series for each branch because many previous

4.9

4.8-4.9 4.7-4.8 4.6-4.7 4.5-4.6 4.4-4.5 4.3-4.4

4.7

4.8

4.9

4.5

4.6

4.7

4.3

4.4

4.5

5 10

4.2

48
1610 15 20 25 30 35 40 45

50
16

32
64

12
8

25
6

51
2

10
2445

50 51
2

10
24

20
48

40
96

Figure 2: Prediction accuracy in local history
design space (several parameters differ from our
final predictor).

algorithms have assumed that this type of approach
improves accuracy [3]. However, we think the design
trade-offs of the local history is changed because the
geometric history length in the local components will help to
handle a much longer history length than existing predictors.

To confirm the best configuration of the local history,
we evaluate the FTL with ten global components and five
local components in a CBP3 framework. We use a fixed
global history length and vary the number of local history
entries and the length of the local history. The cost of
the local history table is ignored in this evaluation. Figure
2 shows the result. Surprisingly, this result shows several
characteristics that contradict the conventional assumption.
(1) All predictors using more than sixteen entries achieve
the same accuracy range. (2) A moderate number of local
history entries (around 32 entries) show slightly higher
prediction accuracy than larger number of entries.

We conclude that the local history table that employs a
moderate number of entries is the most cost-efficient. From
previous study [3] that categorized branch history, local
history that stores a moderate number of entries is called
per-set branch history in this paper. This preliminary study
also includes several interesting features, but further analysis
is intended to be part of our future work.

4. THE FTL++ BRANCH PREDICTOR
The FTL++ improves upon the FTL by using per-set

branch history instead of conventional local history. As well
as history management, the FTL++ also employs several
techniques, which contains minor updates of a prediction
algorithm and novel filtering mechanisms, to improve the
prediction accuracy.

4.1 Prediction Computation
In the FTL++, branch predictions are only performed in

the fetch stage. In the fetch stage, the FTL++ calculates
indexes for prediction components. Multiple prediction
counters are read in parallel from prediction components.

The predictor sums the counters through an adder tree. The
sign of the sum is used as a prediction result.

Contrary to the previous study, the prediction result from
the adder tree can be overwritten by the sign of a counter
from a BIM. This happens only when the absolute value of
the sum is much smaller than the updating threshold θ. We
call this feature a BIM counter overwriting. This feature is
motivated by the knowledge that the absolute value of the
sum has been strongly correlated to its confidence level [4].
The details of this feature are described in Section 4.4.

4.2 Updating Prediction Components
An update of the FTL++ is performed in the retire stage.

The prediction components are updated on misprediction
or when the absolute value of the sum is smaller than the
updating threshold θ. Counters used for the prediction
are incremented when a branch is taken. Otherwise, the
counters are decremented. In the retire stage, the predictor
calculates the sum as performed in the fetch stage in order
to compare the absolute value of the sum and the updating
threshold θ. Unlike existing perceptron-like predictors, the
FTL++ updates a BIM when the counter from the BIM is
not equal to the branch outcome.

For this updating policy, the updating threshold θ is one
of the most important parameters. The FTL++ adjusts the
updating threshold θ dynamically. Section 4.3 describes how
to adjust the updating threshold θ.

4.3 Dynamic Threshold Fitting for a Deeply
Pipelined Processor

The updating threshold θ significantly affects the accuracy
of the predictor using the adder tree [6]. To optimize the
threshold value, we employ the dynamic threshold fitting
that is derived from the O-GEHL. The threshold counter
(TC) is used to decide the best updating threshold θ. The
FTL++ modifies the updating algorithm of TC to monitor
the ratio of the number of updates on mispredictions and
the number of updates on correct predictions in the deeply
pipelined processor. The modified algorithm is shown in
Algorithm 1.

Algorithm 1 Updating the Threshold Counter (TC)

sum in fetch← output of adder tree at the fetch stage
sum in retire← output of adder tree at the retire stage
if (sum in fetch ≥ 0) 6= outcome then

if (sum in retire ≥ 0) = outcome then
TC ← TC + 2 /* A prediction result is changed
between the fetch stage and the retire stage */

else
TC ← TC + 1 /* Update on a misprediction */

end if
else

if |sum in fetch| < θ then
TC ← TC − 1 /* Update on a correct prediction */

end if
end if

In this new updating policy, the prediction result in the
fetch stage is required in the retire stage. To support this
feature, the FTL++ employs a 128-entry circular buffer for
holding previous prediction results. When the predictor
makes a prediction, the result is stored in the buffer. When

the predictor updates a threshold counter, the predictor
reads the prediction from the buffer.

4.4 BIM Counter Overwriting
The sum of the prediction counters provides not only

prediction result but also the confidence level of the
prediction. When the absolute value of the sum is small,
the confidence level of the prediction becomes low. Such
predictions, whose confidence level is low, often become
less accurate than predictions from much simpler branch
predictors, such as a bimodal predictor. To improve these
cases, the FTL++ employs a BIM counter overwriting.

To track the confidence level of the prediction from the
adder tree, we add a counter that is called a BIM counter
(BC). The BC shows the confidence level of the prediction
from the adder tree, when the absolute value of the sum is
small. When the BC is positive and the sum of the fetch
stage is smaller than half of the updating threshold θ, the
FTL++ use a prediction from the BIM as the prediction
result. Algorithm 2 shows how the BC is updated. When
the sum of the fetch stage is smaller than half of the
updating threshold θ, the predictor updates the counter.
Until the corresponding branch is retired, the information
about whether the sum in the fetch stage is smaller than
half of the updating threshold θ is stored in the circular
buffer as described in Section 4.3.

Algorithm 2 Updating the BIM Counter (BC)

sum in fetch← output of adder tree at the fetch stage
bim in retire← output of the BIM at the retire stage
/* When BC ≥ 0, BIM can be used as a prediction.
Otherwise, sum is always used as a prediction. */
if (|sum in fetch| < θ/2) and
((sum in fetch ≥ 0) 6= (bim in retire ≥ 0)) then

if (bim in retire ≥ 0) = outcome then
BC ← BC +1 /* BIM makes a correct prediction */

else /* (sum in fetch ≥ 0) = outcome */
BC ← BC − 1 /* sum makes a correct prediction */

end if
end if

4.5 Filter Predictor
We apply two different filtering strategies for the FTL++.

4.5.1 Whitelist Filtering
The first type of filtering strategy is whitelist filtering.

The whitelist filtering mechanism is designed to filter
easy-to-predict branches. The filtering components
overwrite the prediction when the filtering conditions are
met. When the overwritten prediction results in a correct
prediction, the base predictor cancels the update of the
prediction components. We employ a bias filter and a loop
predictor as the whitelist filter. These filtering schemes were
already proposed in the previous competitions [7].

The bias filter employs a table indexed by the branch
address. Each entry has four states (initial, always-taken,
always-nottaken, and normal). Other predictors make their
prediction when the corresponding state is normal.

The loop predictor employs a set-associative prediction
table for tracking the behavior of the loop instruction.
Originally, each entry in the prediction table consists of the
branch direction of a corresponding branch instruction, the

loop length counter, the current iteration counter, the tag,
and the replacement information. We use Least Recently
Used (LRU) replacement policy for our loop predictor. We
duplicate the current iteration counter to update the counter
in the fetch stage. The other counters and flags are updated
in the retire stage.

4.5.2 Blacklist Filtering
The other type of the filtering strategy is a blacklist

filtering. A blacklist filtering mechanism is designed to filter
hard-to-predict branches. The role of the blacklist filter is
to prevent the predictor from training for hard-to-predict
branches. It reduces the meaningless training because the
hard-to-predict branch cannot be predicted correctly, even
if the predictor gets enough training. Blacklist filtering
also reduces destructive aliasing of prediction components.
As the blacklist filter, we propose a give-up filter and an
exceptional filter for the FTL++.

The give-up filter tracks the branch instructions whose
prediction accuracy is lower than that of the bimodal branch
predictor. The branch address is registered to the give-up
table on misprediction. The filter tracks the accuracy
of the bimodal prediction and the prediction of the base
predictor. When it detects that the bimodal prediction
is more accurate than that of the base prediction, the
filter overwrites the final prediction and prevents the base
predictor from training for the branch instruction.

The exceptional filter tracks a branch instruction whose
prediction sum is far from correct. When the absolute
value of the sum is large (in other words, the confidence
level of the prediction is high) and the prediction results
in a wrong prediction, the exceptional filter starts to track
the branch. When such situation occurs repeatedly on
the tracked branch, the predictor stops training for the
corresponding branch.

4.6 Optimizations for the Competition
We introduce the detailed configurations for the CBP3 in

this section. Figure 3 shows the overview of an optimized
FTL++. The FTL++ employs four different branch
histories and eighteen prediction components for generating
the prediction result. The FTL++ collects global history,
two per-set histories, and conventional local history. For
per-set history, the predictor employs two types of history
tables. One contains 32 entries, and the other contains eight
entries. The per-set history tables are indexed by a hashed
branch address that is folded by the exclusive-OR. The local
history table contains 1024 entries.

The global history register and the per-set history table
also contain a path history, which is a part of the previous
branch address. In this study, 1-bit of the branch address
is used as a path history. The predictor updates the global
history and the per-set histories on all branch instructions.
On unconditional branches and indirect branches, we put
a path history into the global history instead of treating
them as taken branches. According to [8], the behavior of
branches after CALLs and RETs has little correlation to
prior branches. To improve prediction accuracy for such
branches, we append 3 bits on CALL instructions and 2
bits on RET instructions into global history and per-set
history. All resources for the branch histories are duplicated
to support speculative updates. We update only speculative
branch histories in the fetch stage. The other branch

��

�

��

���

���	
���

�������

�
�
�
� �	���

�
��������

�0?

�
���

�
	

�
�
�
�

�
�
���

�	

�
�

�
�
���

�
	

�	���

�	���

�0?

�0?

����

����

�������

 !	����"��

���

�	���

�#$

%���&

��	���

!'

!(

!�

Figure 3: The FTL++ Branch Predictor.

histories are updated in the retire stage.
The prediction components are divided into five groups

by correlated branch history. Eight components are indexed
by the branch address and global history. Six components
are indexed by the branch address and per-set history that
classifies branch history into 32 groups. Two components
are indexed by the branch address and per-set history that
classifies branch history into eight groups. One component is
indexed by the branch address and conventional local history
whose table has 1024 entries. One component is indexed
by only global history. We found that the FTL++ using
only the global history register and one per-set history table
with 32-entry generates accurate predictions, but combining
multiple local histories leads to further improvement in
prediction accuracy.

4.7 Budget Count
The detailed configuration and the budget counting for

the predictor are shown in Table 1. The total budget size is
less than 532480 bit (65KB).

5. CONCLUSION
To improve prediction accuracy, we explore the design

space of local history. We have found that the local
history table with small number of entries requires low
hardware resources and still produces good accuracy. This
kind of local history is called per-set branch history.
Based on this consideration, we propose the FTL++
branch predictor. We improve the prediction accuracy
by using cost-efficient per-set history. We also propose
an enhancement of the dynamic threshold fitting and the
BIM counter overwriting. As well as the branch prediction
algorithm, we also propose two filtering mechanisms to
prevent hard-to-predict branches from polluting history
tables uselessly. In the future, we will explore a more
cost-efficient branch prediction algorithm using local history
to improve prediction accuracy.

Table 1: Configuration and Budget Count.
Configuration Budget

BIM 4096-entry × 6-bit 24576
Global (293-bit + 33-bit path) × 4 1304
history 9-components × 4096-entry × 6-bit 221184

12-bit folded history × 8 × 4 384
Per-set (72-bit + 33-bit path) × 32 × 2 6720
history 6-components × 4096-entry × 6-bit 147456
32-entry 12-bit folded history × 32 × 6 × 2 4608
Per-set (16-bit + 16-bit path) × 8 × 2 512
history 2-components × 4096-entry × 6-bit 49152
8-entry 12-bit folded history × 8 × 2 × 2 384
Local 1024-entry × 3-bit history × 2 6144
history 1-component × 4096-entry × 6-bit 24576
Bias 16384-entry × 2-bit 32768
Loop 16-entry × 8-way × 64-bit 8192
Giveup 8-entry × 8-way × 23-bit 1792
Except 8-entry × 8-way × 28-bit 1472
Others 1-bit flag × 2 2

32-bit pc buffer × 2 64
128-entry × 3-bit circular buffer 384
7-bit buffer pointer × 2 14
12-bit threshold counter (TC) 12
10-bit BIM counter (BC) 10

Total 531710

6. REFERENCES
[1] K. Skadron, M. Martonosi, and D. W. Clark,

“Speculative updates of local and global branch history:
A quantitative analysis,” The Journal of Instruction
Level Parallelism, vol. 2, January 2000.

[2] Y. Ishii, “Fused two-level branch prediction with ahead
calculation,” The Journal of Instruction Level
Parallelism, vol. 9, May 2007.

[3] T.-Y. Yeh and Y. N. Patt, “A comparison of dynamic
branch predictors that use two levels of branch history,”
in Proceedings of the 20th Annual International
Symposium on Computer Architecture, ISCA ’93,
pp. 257–266, 1993.

[4] V. Desmet, L. Eeckhout, and K. De Bosschere,
“Improved composite confidence mechanisms for a
perceptron branch predictor,” J. Syst. Archit., vol. 52,
pp. 143–151, March 2006.

[5] A. Seznec, “Analysis of the o-geometric history length
branch predictor,” in Proceedings of the 32nd annual
international symposium on Computer Architecture,
ISCA ’05, pp. 394–405, 2005.

[6] D. A. Jiménez and C. Lin, “Dynamic branch prediction
with perceptrons,” in Proceedings of the 7th
International Symposium on High-Performance
Computer Architecture, HPCA ’01, pp. 197–206, 2001.

[7] H. Gao and H. Zhou, “Adaptive information processing:
An effective way to improve perceptron predictors,”
The Journal of Instruction Level Parallelism, vol. 7,
April 2005.

[8] L. Porter and D. M. Tullsen, “Creating artificial global
history to improve branch prediction accuracy,” in
Proceedings of the 23rd international conference on
Supercomputing, ICS ’09, pp. 266–275, 2009.

