
OH-SNAP: Optimized Hybrid Scaled Neural Analog Predictor

Daniel A. Jiménez
Department of Computer Science

The University of Texas at San Antonio

Abstract

Neural-based branch predictors have been among
the most accurate in the literature. The recently
proposed scaled neural analog predictor, or SNAP,
builds on piecewise-linear branch prediction and re-
lies on a mixed analog/digital implementation to mit-
igate latency as well as power requirements over pre-
vious neural predictors. I present an optimized ver-
sion of the SNAP predictor, hybridized with two sim-
ple two-level adaptive predictors. The resulting opti-
mized predictor, OH-SNAP, delivers high accuracy.

1 Introduction

This note describes my entry into the 3rd JILP Cham-
pionship Branch Prediction Competition. My en-
try is based onscaled neural analog predictionthat
was presented in MICRO 2008 [1] and IEEE-Micro
2009 [2]. My optimized version of this predictor at-
tempts to strike a balance between implementabil-
ity and accuracy. An actual implementation would
likely differ in design complexity but deliver similar
performance. The Optimized Hybrid Scaled Neu-
ral Predictor, or OH-SNAP, uses only branch ad-
dress and outcome information, eschewing the other
pipeline information available in the CBP3 infras-
tructure.

Section 2 describes the idea of the algorithm. Sec-
tion 3 gives a list of tricks used to make the algorithm
more accurate. Section 4 computes the size of the
predictor to show that it stays within the limits im-
posed by the contest.

2 The Idea of the Algorithm

I present an algorithm in Algol-like pseudo-code that
captures the idea of the algorithm without going into
too much detail.

2.1 Variables

The following variables are used by the algorithm:

W A two-dimensional array of integers weights.
Addition and subtraction on elements ofW saturate
at +63 and -64.

h The global history length. This is a small integer,
258 in my implementation.

H The global history register. This vector of bits
accumulates the outcomes of branches as they are
executed. Branch outcomes are shifted into the first
position of the vector.

A An array of addresses. As branches are executed,
their addresses are shifted into the first position of
this array. In the implementation, the elements of the
array are the lower 9 bits of the branch address.

C An array of scaling coefficients. These coeffi-
cients are multiplied by the partial sums of weights
in a dot product computation to make the predic-
tion. There is a different coefficients for each his-
tory position, exploiting the fact that different his-
tory positions make a different contribution to the
overall prediction. The coefficients are chosen as
C[i] = f(i) = 1/(A + B × i) for values ofA and
B chosen empirically. This formula reflects the ob-
servation that correlation between history and branch
outcome decreases with history position, illustrated
in Figure 1 taken from the original SNAP paper [1].

sum An integer. This integer is the dot product of
a weights vector chosen dynamically and the global
history register.

1



0 50 100

i

0.0

0.2

0.4

0.6

0.8

1.0

f(
i) Correlation Coefficients

Fitted Inverse Linear Curve

Figure 1: Weight position and branch outcome corre-
lation. This figure is taken from the original SNAP pa-
per [1].

2.2 Prediction Algorithm

Figure 2 shows the functionpredict that computes
the Boolean prediction function. The function ac-
cepts the address of the branch to be predicted as its
only parameter. The branch is predicted taken ifpre-
dict returnstrue, not taken otherwise. The weights
are organized into blocks of 8 weights each to re-
duce the number of tables, hence decreasing selec-
tion logic overhead. The dot product computation
can be expressed as summing of currents through
Kirchhoff’s law. The multiplication by coefficients
can be expressed by appropriately sizing transistors
in the digital-to-analog converters described in the
original SNAP article [1].

2.2.1 Predictor Update

The predictor update algorithm is not show for space
reasons. However, it is basically the same algorithm
presented in several previous related works [5, 3, 4].
The weights used to predict the branch are updated
according to perceptron learning. If the prediction
was incorrect, or if the sum used to make the predic-
tion has a magnitude less than a parameterθ, then
each weight is adjusted up if the outcome of the cur-
rent branch is the same as the outcome of the corre-
sponding branch in the history, or decremented oth-
erwise.

3 Tricks

In this section, I describe a number of tricks used
to fit the predictor into 65 kilobytes as well as

achieve good accuracy. A number of parameters
to the algorithm were chosen empirically; unfortu-
nately, limited space does not allow me to show their
values in this note, but they are described in my
predictor.cc.

3.1 Using Global and Per-Branch History

To boost accuracy, I used a combination of global
and per-branch history rather than just global history
as outlined in the algorithms above. A table of per-
branch histories is kept and indexed by branch ad-
dress modulo number of histories. Weights for local
perceptrons are kept separately from global weights.
These histories are incorporated into the computa-
tions for the prediction and training in the same way
as the global histories. This technique was used in
the perceptron predictor [6] and has been referred
to asalloyedbranch prediction in the literature [9].
These parameters were chosen empirically.

3.2 Ragged Array

TheW matrix is represented by a ragged array. That
is, it is not really a matrix, but a structure in which the
size of the row varies with the index of the column.
Rows for correlating weights representing more re-
cent history positions are larger since these positions
have higher correlation with branch outcome and
thus should be allocated more resources. The sizes
of the components of the array are given in Table 1
as part of accounting for the size of the predictor.

3.3 Training Coefficients Vectors

The vector of coefficients from the original SNAP
was determined statically. My predictor tunes these
values dynamically. When the predictor is trained,
each history position is examined. If the partial pre-
diction given at this history position is correct, then
the corresponding coefficient is increased by a cer-
tain factor (factor in the code); otherwise is is
decreased by that factor. Also, four separate coef-
ficients vectors are kept, indexed by branch address
modulo four. Coefficients are part of the state of
the predictor, so they are represented as 24-bit fixed
point numbers. Now that coefficients vary, they can
no longer be represented through fixed-width tran-
sistors in the digital to analog converters. How-
ever, they can still be implemented efficiently by
being represented digitally similarly to the percep-
tron weights, then multiplied by the partial products

2



function prediction(pc: integer) : { taken, not taken }
begin

sum := C[0] × W [pc mod n, 0] Initialize to bias weight
for i in 1 .. h by 8 in parallel For all h/8 weight tables

k := (hash(A[i..i + 7]) xor pc) mod n Select a row in the table
for j in 0 .. 7 in parallel For all weights in the row

sum := sum + C[i + j] × W [k, i + j + 1] × H[i + j] Add to dot product
end for

end for
if sum>= 0 then Predict based on sum

prediction:= taken
else

prediction:= not taken
endif

end

Figure 2:SNP algorithm to predict branch at PC. This figure is taken from the original SNAP paper [1] and slightly
modified.

through digital-to-analog conversion and multiplica-
tion with op-amps.

3.4 Training and tweaking θ

The adaptive training algorithm used for O-
GEHL [8] is used to dynamically determine the value
of the thresholdθ, the minimum magnitude of per-
ceptron outputs below which perceptron learning is
triggered on a correct prediction. I extend this al-
gorithm to include multiple values ofθ, chosen by
branch address modulo number ofθs. Also, the value
trained adaptively is multiplied by a small empir-
ically tuned factor to determine whether to trigger
perceptron learning.

3.5 Branch Cache

The predictor keeps a cache for conditional branches
with entries consisting of partially tagged branch ad-
dresses, the bias weight for the given branch, and
flags recording whether the branch has ever been
taken or ever been not taken. The cache is large
enough to achieve more than 99% hit rate on most of
the traces. This way, there is no aliasing between bias
weights. Also, branches that have only displayed one
behavior during the run of the program can be pre-
dicted with that behavior and prevented from training
and thus possibly aliasing the weights. The number
of entries, size of partial tags, and associativity of the
branch cache are empirically determined. The cache

is filled with new conditional branches as they are
predicted, with old branches being evicted according
to a least-recently-used replacement policy.

3.6 Hybrid Predictor

Two other predictors are used alongside the SNAP
predictor. Agshare-style predictor [7] indexed by
a hash of branch address and branch history is con-
sulted if the magnitude of the perceptron output falls
below a certain tuned threshold. If thegsharepre-
diction has low confidence (i.e. if the two-bit sat-
urating counter from the gshare does not have the
maximum or minimum value) then a PAg-style local-
history predictor [10] consisting of a table of single
bits is consulted. The history lengths of thegshare
andPAg predictors is tuned empirically. The thresh-
old below which the table-based predictors take over
is expressed as a fraction ofθ.

3.7 Other Minor Optimizations

A minimum coefficient value was tuned empirically;
coefficients are prevented from going below this
value when initialized. The output of local percep-
trons is multiplied by a tuned coefficient before being
summed with the bias weight and partial sum from
correlating weights. The block size was changed
from eight in the original SNAP to three in this im-
plementation.

3



Source of bits Quantity of bits Remarks
branch queue 129 × (9 + 1 + 17) = 3, 483 9-bit index, 1 bit prediction, 17 bit local history
local history 384 × 17 = 6, 528 384 local histories, 17 bits each
local weights 7 × 96 × 17 = 11, 424 96 local perceptrons, each 17 7-bit weights
weights blocks 0..6 7 × (3 × 7 × 512) = 75, 264 1st 7 columns have 512 blocks of 3 weights
weights blocks 7..12 6 × (3 × 7 × 256) = 32, 256 next 6 columns have 256 blocks of 3 weights
weights blocks 13..85 73 × (3 × 7 × 128) = 196, 224 last 73 columns have 128 blocks of 3 weights
branch cache 64 × 140 × (10 + 7 + 2) = 170, 240 64 sets, 140 ways 10-bit tag, 7-bit bias, 2 bit T/NT
other predictor 2, 048× (2 + 1) = 6, 144 2K 2-bit gshare + 2k 1-bit local counters
coefficients vectors 4 × 24 × (258 + 1) = 24, 864 4 24-bit 259-entry fixed-point vectors
pattern history 258 + 129 = 387 enough circular buffer for all in-flight branches
path history 9 × (258 + 129) = 3, 483 enough circular buffer for all in-flight branches
θ values 12 × 26 = 312 26 12-bit threshold values
total 530, 609 total number of bytes is 66,326 = 64.77KB
surplus bits 65 × 1024 × 8 − 530, 609 = 1, 871 enough for miscellaneous variables

Table 1: Computing the total number of bits used. Total number of bytes is 66,326.

4 The Size of the Predictor

Figure 1 shows how I compute the size of the state
used for the predictor. The total number of bits used
by my predictor is 530,609, which is less than the
65KB = 532,480 bits allowed for the contest.

5 Acknowledgement

This research is supported by NSF grants CRI-
0751138 and CCF-0931874.

References

[1] Renée St. Amant, Daniel A. Jiménez, and Doug
Burger. Low-power, high-performance analog neu-
ral branch prediction. InProceedings of the 41th
Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-41). IEEE Computer Soci-
ety, November 2008.

[2] Renée St. Amant, Daniel A. Jiménez, and Doug
Burger. Mixed-signal approximate computation:
A neural predictor case study. IEEE Micro –
Top Picks from Computer Architecture Conferences,
29(1):104–115, 2009.

[3] Daniel A. Jiménez. Fast path-based neural branch
prediction. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microar-
chitecture (MICRO-36), pages 243–252. IEEE Com-
puter Society, December 2003.

[4] Daniel A. Jiménez. Piecewise linear branch predic-
tion. In Proceedings of the 32nd Annual Interna-
tional Symposium on Computer Architecture (ISCA-
32), June 2005.

[5] Daniel A. Jiménez and Calvin Lin. Dynamic branch
prediction with perceptrons. InProceedings of the
7th International Symposium on High Performance
Computer Architecture (HPCA-7), pages 197–206,
January 2001.

[6] Daniel A. Jiménez and Calvin Lin. Neural methods
for dynamic branch prediction.ACM Transactions
on Computer Systems, 20(4):369–397, November
2002.

[7] Scott McFarling. Combining branch predictors.
Technical Report TN-36m, Digital Western Re-
search Laboratory, June 1993.

[8] André Seznec. Analysis of the o-geometric history
length branch predictor. InProceedings of the 32nd
Annual International Symposium on Computer Ar-
chitecture (ISCA’05), pages 394–405, June 2005.

[9] Kevin Skadron, Margaret Martonosi, and Dou-
glas W. Clark. A taxonomy of branch mispredic-
tions, and alloyed prediction as a robust solution to
wrong-history mispredictions. InProceedings of the
2000 International Conference on Parallel Architec-
tures and Compilation Techniques, pages 199–206,
October 2000.

[10] T.-Y. Yeh and Yale N. Patt. Two-level adaptive
branch prediction. InProceedings of the 24th
ACM/IEEE International Symposium on Microar-
chitecture, pages 51–61, November 1991.

4


