
 Branch Prediction:
Caveats and Second-Order Effects

Making a prediction is not an event...
 ... it's a process.

 Phil Emma
pemma@us.ibm.com

12/5/04

Q: WHY predict branches?

Instruction
 Fetch

Decode &
Dispatch

Execute

Fetch / Store

Branch

or

or

A1: To make ALL phases of
 processing run smoothly

A2: Because there are a lot of them

WHEN and WHAT to predict?
Prefetch Addr. Instr.

Prefetch
 Instr.
Decode

 Addr.
Generate

Operand
 Fetch

Execute

Autonomous
 Prefetching
 Engine

Predicted Wrong Action
Predicted Wrong Target

Encountered Unknown Branch

Prefetch Time: Is there a branch?
 Is it taken?
 To where?
Decode Time: Is it taken?
 Note: We can be wrong about THREE
different things at THREE different times.

Global Actions

Branch Address

History
 Array

Predict
 Taken

 Predict
Not Taken

 Taken
(Wrong)

Not Taken
 (Wrong)

Not Taken
 (Right)

 Taken
(Right)

What are discriminators,
and how do we use them
to predict branches?

Decode-Time
Prediction

F

Why are discriminators fallible?
Paths vary
Individual branches vary
We use VIRTUAL addresses, and
are insensitive to page overlays
Hashing functions cause collisions
Collisions between threads

Prefetch Address

MUX

 Branch
Predictor+1

Memory

Instruction Buffer

Prefetch-Time
Prediction
Why is this harder?

We do not get to see
the instruction stream
We have to predict the
target address as well
We are fetching blocks,
not single instructions
We must make our
prediction in one cycle!

Tag CC Select Offset

Prefetch Address Register BTB (4-way Set Associative)

"Hit" Logic

New Target Address + Length, or "Miss"

Valid Action Tag Offset Target Address Length Special T Checkbits

BTB Entry

Q: How much context can the BTB hold?
 (e.g.,relative to the I-cache?)

The Superscalar Conundrum

Q: At what issue rate do we require the prediction
of multiple branches per cycle (with the
corresponding multiplicity of I-fetches)?

Q: How large is the (compound) BTB entry needed
to facillitate this, and now how much
context can the BTB hold?

Q: Are Trace Caches more efficient in this context?

Implementation Concerns (1)
Predictors that need to know the
outcome of the "last" n branches
may not work in exactly the way
 that was anticipated.

In a deep pipeline, the "last" n branches
have generally not executed by the time
 that the prediction is needed

Why?

Implementation Concerns (2)

Predictors that need to record lots
of events (e.g., every branch) can
run into problems because of the
 excessive bandwith required.

Searches and updates must be prioritized.
Anomalous behavior will result no matter
 how this is done.

Why?

Implementation Concerns (3)
Predictions are usually urgent. We
tend to need to know what we are
 going to do within a single cycle.

While complicated predictions can be
pipelined and staged ahead, the crisis
occurs following the first wrong guess.

Why?

Groundrules and Results
1. The only constraint was space.
2. The predictor can "see" the instructions.
3. Prediction of branch action at decode time.
4. No limit on complexity:

We DO know the last n branches.
We CAN record any and all information.
We DO NOT have to be timely.

The Panel Has Decided to Award a Special Prize.
 But first ...

2.5

3

3.5

4

4.5

5

MM SERV ALL

Design Workloads

MPKI

2.5

3

3.5

4

4.5

5

INT MM SERV ALL

Mystery Workloads

MPKI

0.4

0.5

0.6

0.7

0.8

Floating Point Workloads

MPKI

Best Worst

Design

Mystery

2.5

3

3.5

4

4.5

5

2.5

3

3.5

4

4.5

5

MM SERV ALLINT

Both Sets of Workloads
Design

Mystery

MPKI

Special Award

for

"Best Practices"

 Andre' Seznec

The O-GEHL Branch Predictor

