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Q: WHY predict branches?
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A1: To make ALL phases of
  processing run smoothly

A2: Because there are a lot of them



WHEN and WHAT to predict?
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Prefetch Time: Is there a branch?
                          Is it taken?
                          To where?
Decode Time:  Is it taken? 
  Note: We can be wrong about THREE
different things at THREE different times.



Global Actions
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What are discriminators,
and how do we use them
to predict branches?
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Why are discriminators fallible?
Paths vary
Individual branches vary
We use VIRTUAL addresses, and 
are insensitive to page overlays
Hashing functions cause collisions
Collisions between threads 



Prefetch Address

MUX
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Memory

Instruction Buffer

Prefetch-Time
Prediction
Why is this harder?

We do not get to see 
the instruction stream
We have to predict the 
target address as well
We are fetching blocks, 
not single instructions
We must make our 
prediction in one cycle!



Tag   CC Select   Offset

Prefetch Address Register BTB (4-way Set Associative)

"Hit" Logic

New Target Address + Length, or "Miss"
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BTB Entry

Q: How much context can the BTB hold?
               (e.g.,relative to the I-cache?)



The Superscalar Conundrum

Q: At what issue rate do we require the prediction 
of multiple branches per cycle (with the 
corresponding multiplicity of I-fetches)?

Q: How large is the (compound) BTB entry needed 
to facillitate this, and now how much 
context can the BTB hold?

Q: Are Trace Caches more efficient in this context? 



Implementation Concerns (1)
Predictors that need to know the 
outcome of the "last" n branches 
may not work in exactly the way
         that was anticipated. 

In a deep pipeline, the "last" n branches
have generally not executed by the time
        that the prediction is needed

Why?



Implementation Concerns (2)

Predictors that need to record lots
of events (e.g., every branch) can
run into problems because of the
    excessive bandwith required. 

Searches and updates must be prioritized.
Anomalous behavior will result no matter
                    how this is done.

Why?



Implementation Concerns (3)
Predictions are usually urgent. We
tend to need to know what we are
  going to do within a single cycle.

While complicated predictions can be
pipelined and staged ahead, the crisis
occurs following the first wrong guess. 

Why?



Groundrules and Results
1. The only constraint was space.
2. The predictor can "see" the instructions.
3. Prediction of branch action at decode time.
4. No limit on complexity:

We DO know the last n branches.
We CAN record any and all information.
We DO NOT have to be timely. 

The Panel Has Decided to Award a Special Prize.
                             But first ...
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"Best Practices"



             Andre' Seznec

The O-GEHL Branch Predictor


