
The Frankenpredictor
Stitching Together Nasty Bits of Other Branch Predictors

Gabriel H. Loh
Georgia Institute of Technology

College of Computing
loh@cc.gatech.edu

Abstract
Our branch predictor proposed for the Championship
Branch Prediction (CBP) contest is a hybrid/mutation of
many different ideas previously proposed in the literature,
combined with a few new techniques. The mix of traces
requires the predictor to handle both capacity (large ta-
bles) and deep correlation extraction (long branch histo-
ries), both made difficult by the relatively small hardware
budget. We use a gskewed-agree predictor to provide ca-
pacity, combined with a path-based neural predictor that
simultaneously acts as both a long-history predictor and a
fusion/meta-predictor.

1 Introduction

The need for accurate branch prediction algorithms for
large-window, deeply-pipelined microprocessors is well
known. While much research has gone into branch pre-
diction over the past two decades, many algorithms have
been difficult to compare due to differing benchmarks, ar-
chitectures and simulation infrastructures used by different
research groups. For the Championship Branch Prediction
(CBP) contest [1], we propose aFrankenpredictorthat scav-
enges parts from many other previously proposed branch
predictors, combines new ideas, and pieces everything to-
gether into a predictor that results in very high prediction
accuracy.

The traces provided for the contest are divided into four
groups, each with different behaviors. In particular, the
integer and multimedia traces appear to benefit from long
branch history correlation, while the server traces have a
very large branch footprint and benefit from less complex
but more spacious tables. We viewed reconciling these
conflicting objectives as the main challenge in designing a
branch predictor that would perform well on all traces. To
deal with these multiple objectives, we have taken parts of
many different predictors to form a “Frankenpredictor.”

2 The Frankenpredictor

The high-level overview of the Frankenpredictor is a
gskewed global history predictor [6] combined with a path-
based neural predictor [3]. The gskewed component pro-
vides capacity for traces with large working sets. The neural
predictor provides the ability to mine long-history correla-
tions, and it also acts as the hybridization agent by using
the gskewed predictions as bits in its input vector. Figure 1

shows the tables and logic of the Frankenpredictor. Note
that the logic used to generate the individual indices for all
of the perceptron weight lookups is not illustrated (this is
represented by the example locations of weights).

2.1 Gskew-Agree Predictor

The primary motivation for the gskewed component is to
provide capacity for the large-footprint server traces. The
gskewed predictor already provides substantial anti-aliasing
capabilities [6]. To augment this, our gskewed predictor
also implements an agree predictor [11]. If the predic-
tion is true, then the gskew-agree predictor agrees with the
static prediction determined by the branch target direction
(BTFNT). Skewing provides interference avoidance bene-
fits, while agree-prediction provides interference tolerance
benefits by converting destructive interference to neutral in-
terference.

Similar to the 2bcgskew predictor, every two counters
in the PHTs share a hysteresis bit [9]. We apply this tech-
nique for all three PHTs, as opposed to only a few as done
for the original 2bcgskew predictor. Also similar to the
enhanced-gskewed and the 2bcgskew, the first PHT uses
only the branch address for indexing and therefore imple-
ments a simple bimodal predictor (albeit a bimodal-agree
predictor) [10]. We also use a partial-update policy similar
to the 2bcgskew update algorithm.

2.2 Path-Based Neural Predictor

Our neural component is primarily based on the path-
based neural predictor [3]. While the central structure is
very similar to the path-based neural predictor, we introduce
many modifications that are new to our Frankenpredictor.

2.2.1 Fusing the Gskew-Agree Prediction(s)
Typically, the input vector of a neural branch predictor con-
sists of k branch outcomes (x1, x2, ..., xk) in the global
branch history register, plus a hard-wired 1 (x0) for the
bias. We expand the perceptron input vector to incorpo-
rate the prediction information of the gskew-agree predic-
tor. In particular, we introduce four new inputsxg0, xg1, xg2

andxgM , wherexgi,i∈{0,1,2} is the direction prediction de-
termined by PHTi of the gskew predictor and the static
BTFNT prediction. The inputxgM is the prediction deter-
mined by the branch target direction and the overall major-
ity vote of agreement. In this fashion, the neural component



f(�) 

f(�) 

f(�) 

f(�) 

f(�) 

f(�) 

f(�) 

f(�) 

f(�) 

f(�) 

f(�) 

f(�) 

B3 

B1 

bias 
for 

pseudo- 
tag bit 0 

for 
pseudo- 
tag bit 1 

for 
bhr[0] 

for 
bhr[9] 

1 0 1 0 1 3 4 2 5 6 7 8 9 

for 
bhr[1] 

for 
bhr[2] 

81
92

 d
ir

ec
ti

on
 b

it
s 

pe
r 

P
H

T
 

40
96

 h
ys

te
re

si
s 

bi
ts

 p
er

 P
H

T
 

BTFNT 

G1 G0 BIM 

Agree Agree Agree 

Majority 

Agree 

4 
co

lu
m

ns
, 1

68
 r

ow
s,

 8
-b

it
 w

ei
gh

ts
 

13
 c

ol
um

ns
, 8

4 
ro

w
s 

8-
bi

t w
ei

gh
ts

 

42
 r

ow
s 

10 

g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 
g(�) 

« 1 

« 1 
11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

57 

58 

49 columns, 7-bit weights 

B2 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

h(
�)

 
h(
�)

 

Final 
Prediction 

n 

n 

pseudotag bit 

branch history bit 

= = 

s 

s 

for 
bhr[10] 

for 
bhr[58] 

for 
bhr[57] 

for 
bhr[11] 

for 
bhr[12] 

s take sign of 

every 2 direction bits 
share 1 hysteresis bit 

si
gn

 

Figure 1. The Frankenpredictor tables and logic. Index generation logic, branch history register and path history
register are not shown.

acts as both a long-history predictor and a prediction fusion
mechanism for the gskew-agree inputs [5].

2.2.2 Non-Uniform Weight Allocation
Depending on the purpose of the weight, we provide a dif-
ferent number of entries in the table of weights. The table
of weights consists of three banks. The first bankB1 corre-
sponds to the bias, pseudotag bits [8], and the most recent
history bits. The second bankB2 provides the weights for
older history bits. The third bankB3 provides the weights
to fuse the gskew-agree predictions. Each bank is sized dif-
ferently and even the widths of the counters vary. The exact
sizes of the tables and counters are shown in Figure 1.

2.2.3 Non-Linear Learning Functions
Research in machine learning has shown that linear learn-
ing functions do not converge as fast as other functions for
perceptron-like algorithms [4]. To approximate the effects
of non-linear learning curves, we still use integer weights
with additive updates, but we interpret the value of a weight
differently by using a weight translation function. These
functions are denoted asf(·), g(·) andh(·) in Figure 1.

The translation functions used forf(·) andg(·) are the
same. Looking at only positive inputs to this function, il-
lustrated in Figure 2(a), the domain is divided into four

quadrants, each of which is linear and the entire function
is piecewise continuous. The binary-encoded value stored
by a weight is translated through this function before being
added to the perceptron’s sum. For example, a counter value
of 23 only contributes a value of 11 to the final sum. The
function is odd-symmetric for negative-valued inputs. The
translation functionh(·) used for the older global branch
history has a sharper concavity and is shown in Figure 2(b).
Note that the domain and range forh(·) are smaller because
the counters used in tableB2 are narrower.

There are two benefits of using a learning curve that is
concave instead of linear. The early part of the curve pro-
vides a slow-start effect, which prevents transient or coin-
cidental correlations from having too great of an impact on
the final prediction. The latter part of the curve has a larger
slope which allows the predictor to more quickly “unlearn”
correlations when program behavior changes. The reason-
ing for a deeper curve forh(·) is that older history bits are
more likely to be very important or to not matter at all.

2.2.4 Skewed Redundant Indexing
The tables of weights for neural predictors typically do not
have very many entries due to the large number of weights
per entry. This results in a large amount of interference. To
help combat the aliasing problem, we use multiple (redun-



0 128 64 32 96 
0 

32 

64 

96 

128 

Value Stored in Counter/Weight 

V
al

ue
 U

se
d 

in
 P

er
ce

pt
ro

n 
Su

m
m

at
io

n 

0 64 32 16 48 
0 

16 

32 

48 

64 

Value Stored in Counter/Weight 

V
al

ue
 U

se
d 

in
 P

er
ce

pt
ro

n 
Su

m
m

at
io

n 

(a) (b)

Figure 2. Perceptron weight translation functions for (a) B1 and B3, and (b) for B2.

dant) weights for each bit of the information vector. The
idea is that the probability of strong destructive aliasing in
multiple rows is less likely than that for a single row. Banks
B1 andB2 provide two weights for each bit of the input vec-
tor, and bankB3 (for the gskew-agree inputs) provides three
weights. Index computations are discussed in Section 2.5.

2.2.5 Synergistic Reinforcement
Since the first bias weight of the perceptron is indexed by
the branch address only, this weight just provides a bi-
modal prediction with a large amount of hysteresis. The first
bank of the gskew-agree predictor is also a bimodal predic-
tor. When both the gskew-agree bimodal table and the bias
weight agree in the direction of the branch, we increase the
contribution of the bias weight. The rationale behind this
“synergistic reinforcement” is that if both the bimodal pre-
diction and the bias weight agree, then it is likely that the
bias weight more accurately reflects the bias of the branch.
A similar reinforcement is performed when the second (re-
dundant) bias weight and the second PHT (G0) agree.

2.3 Branch Address Modifications

We found that the exclusive-OR of the least significant
bits of the program counter with the most recent branch
history bits slightly increases the amount of aliasing. We
permuted the bottom eight bits of the PC by performing a
right barrel shift by two positions which helped to alleviate
some of the aliasing. We found that the branch target direc-
tion provided useful information for indexing, and so our
effective PC is equal to our permuted PC concatenated with
the branch target direction. Note that for the purposes of
indexing, we actually compute a “pseduo-target” direction
based on comparing the target addresswith the permuted
PC (for the gskew-agree, we use the real target direction).
In the Pentium 4 on 90nm processor, the static prediction
is not a strict BTFNT prediction, but it varies based on the

magnitude of the distance to the target as well [2]. We hy-
pothesize that by comparing the target against the permuted
PC, we capture some of this effect.

2.4 Unconditional Branches

Because opcode information is available to the predictor,
unconditional branches are always correctly predicted as
taken. For the update phase of the algorithm, unconditional
branches do not cause updates on any of the gskew-agree
counters or the perceptron weights. Instead, we make mod-
ifications to the branch history register so that later branches
are “aware” that an unconditional branch occurred recently.
In particular, on a subroutine call we shift in eight zeros into
the history register, on a subroutine return we shift in eight
ones into the history register, and on all other unconditional
branches such as indirect jumps we shift in eight alternating
zeros and ones (0x55). After shifting in the 8-bit pattern,
we also hash in the lowest eight bits of the unconditional
branch’s PC (the original PC without permutation or target
direction).

2.5 Path History and IndexingB1, B2 and B3

Whereas the PC we use for indexing contains the
pseudo-target bit, at update time the actual branch direction
is known. For updating the path history, we use the original
PC concatenated with the actual branch direction and the
previous branch direction. This provides slightly better in-
dexing into the perceptron tables because the recent branch
outcomes provide more useful information than the upper
bits of the PC.

When indexing the history portion of the perceptron (for
B1 andB2), we need two indices for the original index and
the redundant index. The first index uses the three least sig-
nificant bits of our current PC (which includes the pseduo-
target direction) and the least significant bits of the path his-
tory. The redundant index is similar, but it uses the three



Bits Description/Justification
36864 Three gskew PHT banks, each with 8192 entries, at 1.5 bits

per entry (due to shared hysteresis bits)
8736 B1 has 84 entries, with 13 weights per entry (10 history

+ 1 bias + 2 pseudotag), and 8-bit weights
14406 B2 has 42 entries, with 49 weights per entry (49 older

bits of history), and 7-bit weights
5376 B3 has 168 entries, with 4 weights per entry (3 gskew-agree

predictions + majority), and 8-bit weights
59 59-deep branch history register

197 Path history buffer: The path-history indices use three bits
from the current PC, and so the number of address bits stored
per path address can be reduced. 61 entries (59 history
+ 2 pseudotag bits): the first two entries require at most 8-3=5
bits (to index into the 168 entries ofB3, only using the current PC
and the two most recent branch addresses); the next ten entries
require at most 7-3=4 bits (to index into the 84 entries ofB2,
which has 13 weights per entry, but the bias uses the current PC,
and the pseudotag bits reuse the addresses already stored for table
B3, which leaves only ten addresses); the last 49 entries only
require 6-3=3 bits each (to index into the 42 entries ofB2).

65638 Total (with 154 bits to spare)

Table 1. Tabulation of all of the state used in the
Frankenpredictor.

most recent branch outcomes from the BHR instead of the
three lowest PC bits.

For the gskew-agree perceptron weights (B3), the pre-
dictor must generate three indices per input. For these in-
dices, we use a variety of hashes that incorporate different
selections from the current PC, the two most recent pre-
vious PCs, and the branch history register. The indices are
computed by choosing two or three of these values, possibly
shifting some of them, and taking the bitwise exclusive-OR.

3 Implementation

The details of the implementation of the Frankenpredic-
tor algorithm are documented in the submitted code. Due
to the constraint on size only, we did not worry about the
access latency, port requirements of the structures, and the
complexity of the logic used. In particular, redundant in-
dexing greatly increases the number of inputs into the per-
ceptron adder tree (although the Multiply-Add Contribution
format of the MAC-RHSP predictor could largely offset this
effect) [8]. Pipelined indexing schemes such as that used in
the path-based neural predictor would have to be adapted to
address the port requirements of the perceptron tables [3].
Non-power-of-two sized tables would not be practical, but
then in a real design, there likely would not be a hard-limit
on the amount of state.

The total state budget is 64K bits + 256 bits = 65792
bits. We use 59 bits of history, with the 10 most recent
branches considered as “young” and tracked byB1, and
all older branches tracked byB2. The state accounting is
shown in Table 1. The path history buffer contains some bits
from the branch history. It is possible to further reduce the
predictor’s total state by taking those bits directly from the

branch history register instead of explicitly copying them
into the path history register.

4 Summary

While the Frankenpredictor as described has some seri-
ous implementation challenges, those shortcomings are all
within what is permitted for the contest, and with some
clever engineering may be overcome. The (omitted) results
show that even beyond a global-local path-based neural pre-
dictor, better prediction accuracy is still achievable.

Acknowledgments
Equipment and funding support provided by Intel Corpora-
tion.

References

[1] The 1st JILP Championship Branch Prediction Competition
(CBP-1).http://www.jilp.org/cbp .

[2] D. Boggs, A. Baktha, J. Hawkins, D. T. Marr, J. A. Miller,
P. Roussel, B. Toll, and K. S. Venkatraman. The Microar-
chitecture of the Pentium 4 Processor on 90nm Technology.
Intel Technology Journal, 8(1), February 2004.

[3] D. A. Jiménez. Fast Path-Based Neural Branch Prediction.
In Proceedings of the 36th International Symposium on Mi-
croarchitecture, pages 243–252, San Diego, CA, USA, De-
cember 2003.

[4] N. Littlestone and M. K. Warmuth. The Weighted Major-
ity Algorithm. Information and Computation, 108:212–261,
1994.

[5] G. H. Loh and D. S. Henry. Predicting Conditional Branches
with Fusion-Based Hybrid Predictors. InProceedings of the
11th International Conference on Parallel Architectures and
Compilation Techniques, Charlottesville, VA, USA, Septem-
ber 2002.

[6] P. Michaud, A. Seznec, and R. Uhlig. Trading Conflict and
Capacity Aliasing in Conditional Branch Predictors. InPro-
ceedings of the 24th International Symposium on Computer
Architecture, pages 292–303, Boulder, CO, USA, June 1997.

[7] R. Nair. Dynamic Path-Based Branch Correlation. InPro-
ceedings of the 28th International Symposium on Microar-
chitecture, pages 15–23, Austin, TX, USA, December 1995.

[8] A. Seznec. Revisiting the Perceptron Predictor. PI 1620, In-
stitut de Recherche en Informatique et Systèmes Aĺeatoires,
May 2004.

[9] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design
Tradeoffs for the Alpha EV8 Conditional Branch Predictor.
In Proceedings of the 29th International Symposium on Com-
puter Architecture, Anchorage, AK, USA, May 2002.

[10] J. E. Smith. A Study of Branch Prediction Strategies. InPro-
ceedings of the 8th International Symposium on Computer
Architecture, pages 135–148, Minneapolis, MN, USA, May
1981.

[11] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt.
The Agree Predictor: A Mechanism for Reducing Negative
Branch History Interference. InProceedings of the 24th
International Symposium on Computer Architecture, pages
284–291, Boulder, CO, USA, June 1997.


